scholarly journals Molecular Targets Involved in the Neuroprotection Mediated by Terpenoids

Planta Medica ◽  
2019 ◽  
Vol 85 (17) ◽  
pp. 1304-1315 ◽  
Author(s):  
Laura González-Cofrade ◽  
Beatriz de las Heras ◽  
Luis Apaza Ticona ◽  
Olga M. Palomino

AbstractNatural products and their derivatives represent the most consistently successful source of drug leads. Terpenoids, a structurally diverse group, are secondary metabolites widely distributed in nature, endowed with a wide range of biological activities such as antibacterial, anti-inflammatory, antitumoral, or neuroprotective effects, which consolidate their therapeutic value. During the last decades, and taking into consideration the prevalence of aging-related diseases, research activity into the neuroprotective effects of these types of compounds has increased enormously. Several signaling pathways involved in neuroprotection are targets of their mechanism of action and mediate their pleiotropic protective activity in neuronal cell damage. In the present review, molecular basis of the neuroprotection exerted by terpenoids is presented, focusing on preclinical evidence of the therapeutic potential of diterpenoids and triterpenoids on neurodegenerative disorders. By acting on diverse mechanisms simultaneously, terpenoids have been emphasized as promising multitarget agents.

2020 ◽  
Vol 26 ◽  
Author(s):  
Nimra Javaid ◽  
Muhammad Ajmal Shah ◽  
Azhar Rasul ◽  
Zunera Chauhdary ◽  
Uzma Saleem ◽  
...  

: Neurodegeneration is a multifactorial process involved the different cytotoxic pathways that lead towards neuronal cell death. Alzheimer’s disease (AD) is a persistent neurodegenerative disorder that normally has a steady onset yet later on it worsens. The documented evidence of AD neuropathology manifested the neuro-inflammation, increased reactive oxygen, nitrogen species and decreased antioxidant protective process; mitochondrial dysfunction as well as increased level of acetylcholinesterase activity. Moreover, enhanced action of proteins leads towards neural apoptosis which have a vital role in the degeneration of neurons. The inability of commercial therapeutic options to treat AD with targeting single mechanism leads the attraction towards organic drugs. Ellagic acid is a dimer of gallic acid, latest studies expressed that ellagic acid can initiate the numerous cell signaling transmission and decrease the progression of disorders, involved in the degeneration of neurons. The influential property of ellagic acid to protect the neurons in neurodegenerative disorders is due to its antioxidant effect, iron chelating and mitochondrial protective effect. The main goal of this review is to critically analyze the molecular mode of action of ellagic acid against neurodegeneration.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiao Lin ◽  
Haotuo Ye ◽  
Felix Siaw-Debrah ◽  
Sishi Pan ◽  
Zibin He ◽  
...  

Intracerebral hemorrhage (ICH) refers to bleeding in the brain and is associated with the release of large amount of inflammasomes, and the activation of different cell death pathways. These cell death pathways lead to removal of inactivated and damaged cells and also result in neuronal cell damage. Pyroptosis is a newly discovered cell death pathway that has gained attention in recent years. This pathway mainly depends on activation of caspase-1-mediated cascades to cause cell death. We tested a well-known selective inhibitor of caspase-1, AC-YVAD-CMK, which has previously been found to have neuroprotective effects in ICH mice model, to ascertain its effects on the activation of inflammasomes mediated pyroptosis. Our results showed that AC-YVAD-CMK could reduce caspase-1 activation and inhibit IL-1β production and maturation, but has no effect on NLRP3 expression, an upstream inflammatory complex. AC-YVAD-CMK administration also resulted in reduction in M1-type microglia polarization around the hematoma, while increasing the number of M2-type cells. Furthermore, AC-YVAD-CMK treated mice showed some recovery of neurological function after hemorrhage especially at the hyperacute and subacute stage resulting in some degree of limb movement. In conclusion, we are of the view that AC-YVAD-CMK could inhibit pyroptosis, decrease the secretion or activation of inflammatory factors, and affect the polarization of microglia resulting in improvement of neurological function after ICH.


2020 ◽  
pp. 1-11
Author(s):  
Xi-jun Wang ◽  
Shi Qiu ◽  
Aihua Zhang ◽  
Jian-hua Miao ◽  
Hui Sun ◽  
...  

The incidence of neurological disorders is growing in the world together with an increased lifespan. Nowadays, there are still no effective treatments for neurodegenerative pathology, which make necessary to search for new therapeutic agents. Natural products, most of them used in phytochemicals from herbal medicine, are considered promising alternatives for the treatment of neurodegenerative diseases. Numerous herbs have been applied to neurodegenerative disease treatments as complementary and alternative medicines. In the 21st century, omics-coupled functional pharmacology was developed for neurodegenerative drug discovery from natural products. In this article, we firstly provide the latest understanding of neurological disorders on risk factors, category, diagnosis and treatment, and then specially present an overview of natural products in neuroprotective effects research from chemical biology to pharmacological targets, and also discuss the natural products application and future challenge.


2020 ◽  
Vol 12 (10) ◽  
pp. 949-959
Author(s):  
Ranju Bansal ◽  
Ranjit Singh

Steroidal pyrazolines constitute an interesting and promising scaffold for drug discovery as they display diverse chemical reactivity and a wide range of biological activities. Literature reports indicate potent anticancer potential of steroidal pyrazolines along with broad-spectrum antimicrobial activities. Strong neuroprotective effects with steroids possessing pyrazoline moiety have also been observed. Among all the therapeutically active steroidal pyrazolines, D-ring-substituted derivatives are highly potent and the least toxic. The current and futuristic research approaches in this area are focused towards the exploration of this promising scaffold to develop molecules with widespread pharmacological activities. This review article mainly covers the synthetic and pharmacological aspects of steroidal pyrazolines, which will assist the medicinal chemists working in this area in their scientific endeavors.


2020 ◽  
Vol 48 (6) ◽  
pp. 030006052093084
Author(s):  
Lina Yang ◽  
Keshu Shen ◽  
Dongping Ji

Objectives To investigate the neuroprotective effects of six natural compounds (caffeine, gallic acid, resveratrol, epigallocatechin gallate [EGCG], L-ascorbic acid and alpha tocopherol [Vitamin E] on heavy metal-induced cell damage in rat PC12 cells. Methods In this in vitro experiment, rat PC12 cells were exposed to four heavy metals (CdCl2, HgCl2, CoCl2 and PbCl2) at different concentrations and cell apoptosis, necrosis and oxidative stress were assessed with and without the addition of the six natural compounds. Results The metals decreased cell viability but the natural compounds attenuated their effects on apoptosis, necrosis and reactive oxygen species (ROS) levels. Mitochondrial protein changes were involved in the regulation. Conclusion Overall, the natural compounds did provide protection against the metal-induced PC12 cell damage. These data suggest that natural compounds may have therapeutic potential against metal-induced neurodegenerative disease.


Life Sciences ◽  
2014 ◽  
Vol 113 (1-2) ◽  
pp. 7-13 ◽  
Author(s):  
Hadi Ghaffari ◽  
M. Venkataramana ◽  
Behrouz Jalali Ghassam ◽  
S. Chandra Nayaka ◽  
A. Nataraju ◽  
...  

Synthesis ◽  
2020 ◽  
Vol 53 (02) ◽  
pp. 296-308
Author(s):  
Leandro Helgueira Andrade ◽  
Milene Macedo Hornink ◽  
Alice Uva Lopes

AbstractSpiroimides exhibit a wide range of biological activities, such as anticonvulsant, antiarrhythmic, and antihyperglycemic activities. Herein, a novel synthetic application of renewable chemicals, itaconic acid and formamides, is described. Proper exploitation of the reactivity of itaconic acid and formamide allows for the development of an efficient synthetic approach for the production of several new biobased spiroimides, spiro[dihydroquinolin-2-one-succinimides] and spiro[indolin-2-one-glutarimides], in excellent overall yields (up to 98%).


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Rabia Shabir Ahmad ◽  
Muhammad Bilal Hussain ◽  
Muhammad Tauseef Sultan ◽  
Muhammad Sajid Arshad ◽  
Marwa Waheed ◽  
...  

Turmeric (Curcuma longa L.) is a popular natural drug, traditionally used for the treatment of a wide range of diseases. Its root, as its most popular part used for medicinal purposes, contains different types of phytochemicals and minerals. This review summarizes what is currently known on biochemistry, safety, pharmacological activities (mechanistically), and clinical applications of turmeric. In short, curcumin is considered as the fundamental constituent in ground turmeric rhizome. Turmeric possesses several biological activities including anti-inflammatory, antioxidant, anticancer, antimutagenic, antimicrobial, antiobesity, hypolipidemic, cardioprotective, and neuroprotective effects. These reported pharmacologic activities make turmeric an important option for further clinical research. Also, there is a discussion on its safety and toxicity.


Author(s):  
Hiram Hernández-López ◽  
Christian Jairo Tejada-Rodríguez ◽  
Socorro Leyva-Ramos

Abstract: The therapeutic potential of the benzimidazole nucleus dates back to 1944, being and important heterocycle system due to its presence in a wide range of bioactive compounds such as antiviral, anticancer, antibacterial, and so on, where optimization of substituents in this class of pharmacophore has resulted in many drugs. Its extensive biological activity is due to its physicochemical properties like hydrogen bond donor-acceptor capability,  stacking interactions, coordination bonds with metals as ligands and hydrophobic interactions; properties that allow them to easily bind with a series of biomolecules, including enzymes and nucleic acids, causing a growing interest in these types of molecules. This review aims to present an overview to leading benzimidazole derivatives, as well as to show the importance of the nature and type of substituents at the N1, C2, and C5(6) positions, when they are biologically evaluated, which can lead to obtaining potent drug candidate with significant range of biological activities.


Toxins ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 69 ◽  
Author(s):  
Carolina Nicolau ◽  
Alyson Prorock ◽  
Yongde Bao ◽  
Ana Neves-Ferreira ◽  
Richard Valente ◽  
...  

Snake venoms are sources of molecules with proven and potential therapeutic applications. However, most activities assayed in venoms (or their components) are of hemorrhagic, hypotensive, edematogenic, neurotoxic or myotoxic natures. Thus, other relevant activities might remain unknown. Using functional genomics coupled to the connectivity map (C-map) approach, we undertook a wide range indirect search for biological activities within the venom of the South American pit viper Bothrops jararaca. For that effect, venom was incubated with human breast adenocarcinoma cell line (MCF7) followed by RNA extraction and gene expression analysis. A list of 90 differentially expressed genes was submitted to biosimilar drug discovery based on pattern recognition. Among the 100 highest-ranked positively correlated drugs, only the antihypertensive, antimicrobial (both antibiotic and antiparasitic), and antitumor classes had been previously reported for B. jararaca venom. The majority of drug classes identified were related to (1) antimicrobial activity; (2) treatment of neuropsychiatric illnesses (Parkinson’s disease, schizophrenia, depression, and epilepsy); (3) treatment of cardiovascular diseases, and (4) anti-inflammatory action. The C-map results also indicated that B. jararaca venom may have components that target G-protein-coupled receptors (muscarinic, serotonergic, histaminergic, dopaminergic, GABA, and adrenergic) and ion channels. Although validation experiments are still necessary, the C-map correlation to drugs with activities previously linked to snake venoms supports the efficacy of this strategy as a broad-spectrum approach for biological activity screening, and rekindles the snake venom-based search for new therapeutic agents.


Sign in / Sign up

Export Citation Format

Share Document