scholarly journals Release of Fibrinolytic Enzymes by Macrophages in Response to Soluble Fibrin

1977 ◽  
Author(s):  
L. A. Sherman ◽  
J. Lee ◽  
C. C. Stewart

In previous data (J. Exp. Med. 147:76,1977), we have demonstrated that soluble fibrin/fibrinogen complexes are bound to the plasma membrane of guinea pig peritoneal macrophages. This binding is largely irreversible and is not a result of phagocytosis. We have extended our studies to examine the response in vitro of peritoneal macrophages to soluble fibrin/fibrinogen complexes. Unstimulated mouse macrophages were collected by peritoneal lavage and 5–60 μg of soluble fibrin/fibrinogen complexes placed into tissue culture dishes containing the unstimulated cells. Aliquots of the media were collected at 24, 48 and 72 hours. The cell-free media contained increasing amounts both of plasminogen activator and an enzymatic activity which resulted in fibrin and fibrinogen proteolysis independent of the amount of plasmingoen present. The major proteolytic activity was due to the non-plasminogen dependent enzyme. Similar enzymes were released from peritoneal macrophages stimulated in vivo. The plasminogen activator enzyme had a low molecular weight comparable to that previously reported by Unkeless et al, with in vivo stimulation. Other coagulation moieties, such as plasmin and α-2 macroglobulin plasmin complexes did not result in release of the macrophage proteolytic enzymes. The results suggest that the previously described release of fibrinolytic enzymes after thioglycolate injections, may also result from the more pathophysiological stimulation by soluble fibrin/fibrinogen complexes. Release of these enzymes from phagocytic cells may be important, not only in blood clearance of soluble fibrin/fibrinogen complexes, but as part of thrombus reabsorption and wound healing.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ping Zeng ◽  
Bin Liu ◽  
Qun Wang ◽  
Qin Fan ◽  
Jian-Xin Diao ◽  
...  

Macrophage survival is believed to be a contributing factor in the development of early atherosclerotic lesions. Dysregulated apoptosis of macrophages is involved in the inflammatory process of atherogenesis. Apigenin is a flavonoid that possesses various clinically relevant properties such as anti-inflammatory, antiplatelet, and antitumor activities. Here we showed that apigenin attenuated atherogenesis inapoE-/-mice in anin vivotest.In vitroexperiments suggested that apigenin induced apoptosis of oxidized low density lipoprotein- (OxLDL-) loaded murine peritoneal macrophages (MPMs). Proteomic analysis showed that apigenin reduced the expression of plasminogen activator inhibitor 2 (PAI-2). PAI-2 has antiapoptotic effects in OxLDL-loaded MPMs. Enhancing PAI-2 expression significantly reduced the proapoptosis effects of apigenin. Molecular docking assay with AutoDock software predicted that residue Ser473 of Akt1 is a potential binding site for apigenin. Lentiviral-mediated overexpression of Akt1 wild type weakened the proapoptosis effect of apigenin in OxLDL-loaded MPMs. Collectively, apigenin executes its anti-atherogenic effects through inducing OxLDL-loaded MPMs apoptosis. The proapoptotic effects of apigenin were at least partly attributed to downregulation of PAI-2 through suppressing phosphorylation of AKT at Ser473.


1964 ◽  
Vol 120 (5) ◽  
pp. 869-883 ◽  
Author(s):  
Zanvil A. Cohn

The fate of a heat-stable Escherichia coli agglutinogen within three types of rabbit phagocytic cells was examined. A system is described whereby quantitative ingestion of viable E. coli by suspensions of PMN leucocytes, BCG-induced alveolar macrophages, and oil-induced peritoneal macrophages took place in vitro. After various periods of intracellular residence aliquots were injected intraperitoneally into NCS mice and the resulting agglutinins assayed. The loss of immunogenicity within phagocytes was estimated by comparison with a dose-response titration prepared with bacteria alone. Under these conditions no increase in immunogenic mass occurred in vivo or in vitro when viable organisms were employed. PMN leucocytes and alveolar macrophages destroyed the majority of the immunogen within 2 hours of intracellular residence. In contrast, the immunogenicity of E. coli was maintained within peritoneal macrophages for periods up to 5 hours. The use of heat-killed bacilli or specific immune serum did not significantly influence the intracellular fate of the immunogen. Residual immunogenicity was associated with a particle having the same centrifugal properties as the intact organism and essentially none was released in a soluble form. Intracellular residence within phagocytic cells did not influence the resulting temporal sequence of antibody formation nor the proportions of mercaptoethanol-sensitive and resistant immune globulins.


1993 ◽  
Vol 70 (02) ◽  
pp. 301-306 ◽  
Author(s):  
Linda A Robbie ◽  
Nuala A Booth ◽  
Alison M Croll ◽  
Bruce Bennett

SummaryThe relative importance of the two major inhibitors of fibrinolysis, α2-antiplasmin (α2-AP) and plasminogen activator inhibitor (PAI-1), were investigated using a simple microtitre plate system to study fibrin clot lysis in vitro. Cross-linked fibrin clots contained plasminogen and tissue plasminogen activator (t-PA) at concentrations close to physiological. Purified α2-AP and PAI-1 caused dose-dependent inhibition. All the inhibition due to normal plasma, either platelet-rich or poor, was neutralised only by antibodies to α2-AP. Isolated platelets, at a final concentration similar to that in blood, 2.5 × 108/ml, markedly inhibited clot lysis. This inhibition was neutralised only by antibodies to PAI-1. At the normal circulating ratio of plasma to platelets, α2-AP was the dominant inhibitor. When the platelet:plasma ratio was raised some 20-fold, platelet PAI-1 provided a significant contribution. High local concentrations of PAI-1 do occur in thrombi in vivo, indicating a role for PAI-1, complementary to that of α2-AP, in such situations.


1983 ◽  
Vol 50 (02) ◽  
pp. 518-523 ◽  
Author(s):  
C Kluft ◽  
A F H Jie ◽  
R A Allen

SummaryFunctional assay of extrinsic (tissue-type) plasminogen activator (EPA) in plasma on fibrin plates was evaluated. Using specific quenching antibodies, we demonstrated the method to be specific for EPA under all conditions tested. Contributions of urokinases and intrinsic activators were excluded. The quantity of EPA in blood samples, as compared with purified uterine tissue activator, shows 1 blood activator unit (BAU) to be comparable to 0.93 ng.The median values for EPA activity for healthy volunteers were: baseline, 1.9 BAU/ml (n = 123); diurnal, 5.5 BAU/ml (n = 12); DDAVP administration, 11.7 BAU/ml (n = 39); exhaustive exercise, 25 BAU/ml (n = 24); venous occlusion (15 min), 35 BAU/ml (n = 61). A large inter-individual variation in EPA activity was found, while individual baseline values tended to be constant for periods of weeks.In vitro in blood EPA activity shows a disappearance of 50% in about 90 min at 37° C; EPA activity in euglobulin fractions is stable for ≤2 hr at 37° C.A rapid decrease in EPA activity occurs in vivo, as noted after extracorporal circulation and exercise stimulation (t½ decay, 2-5 min).


1972 ◽  
Vol 70 (4) ◽  
pp. 741-757
Author(s):  
Otto Linèt

ABSTRACT Rat adrenal glands atrophied by the administration of cortisol acetate in vivo were used as a model for the study of early metabolic processes occurring in vitro. Atrophied adrenals incubated in the presence of 14C-leucine incorporated subnormal quantities of this amino acid per mg of protein for the first 120 min. When the incubation lasted for a total period of 180 or 240 min a supranormal rise in the 14C-leucine incorporation was observed. Similar changes occurred with some delay with regard to corticosterone production as expressed per 100 mg of tissue. No differences in 14C-leucine incorporation were observed between the control and atrophied adrenals in vivo. Homogenates from atrophied glands incorporated 14C-leucine to a greater extent than the control homogenates. The in vitro incorporation of 14C-orotic acid into the RNA was also higher in atrophied adrenals. The in vitro use of actinomycin D, cycloheximide and amphenone indicated that corticosterone production depended on the incorporation of 14C-leucine. The addition of cortisol to the incubation media markedly decreased the enhancement of 14C-lysine incorporation into the protein of atrophied adrenals. These, as well as additional results suggest rebound phenomena: once atrophic adrenals are transferred to cortisol-free media, reparative processes begin after a delay period. Such phenomena seem to be mediated by regulatory mechanisms at the adrenal level.


1980 ◽  
Vol 152 (6) ◽  
pp. 1596-1609 ◽  
Author(s):  
H W Murray ◽  
Z A Cohn

The capacity of 15 separate populations of mouse peritoneal macrophages to generate and release H2O2 (an index of oxidative metabolism) was compared with their ability to inhibit the intracellular replication of virulent Toxoplasma gondii. Resident macrophages and those elicited by inflammatory agents readily supported toxoplasma multiplication and released 4-20X less H2O2 than macrophages activated in vivo by systemic infection with Bacille Calmette-Guérin or T. gondii, or by immunization with Corynebacterium parvum. Immunologically activated cells consistently displayed both enhanced H2O2 production and antitoxoplasma activity. Exposure to lymphokines generated from cultures of spleen cells from T. gondii immune mice and toxoplasma antigen preserved both the antitoxoplasma activity and the heightened H2O2 release of toxoplasma immune and immune-boosted macrophages, which otherwise were lost after 48-72 h of cultivation. In vitro activation of resident and chemically-elicited cells by 72 h of exposure to mitogen- and antigen-prepared lymphokines, conditions that induce trypanocidal (5) and leishmanicidal activity (14), stimulated O2- and H2O2 release, and enhanced nitroblue tetrazolium reduction in response to toxoplasma ingestion. Such treatment, however, failed to confer any antitoxoplasma activity, indicating that intracellular pathogens may vary in their susceptibility to macrophage microbicidal mechanisms, including specific oxygen intermediates. In contrast, cocultivating normal macrophages with lymphokine plus heart infusion broth for 18H rendered these cells toxoplasmastatic. This in vitro-acquired activity was inhibited by scavengers of O2-, H2O2, OH., and 1O2, demonstrating a role for oxidative metabolites in lymphokine-induced enhancement of macrophage antimicrobial activity. These findings indicate that augmented oxidative metabolism is an consistent marker of macrophage activation, and that oxygen intermediates participate in the resistance of both in vivo- and vitro-activated macrophages toward the intracellular parasite, T. gondii.


1980 ◽  
Vol 29 (2) ◽  
pp. 575-582
Author(s):  
Robert E. Baughn ◽  
Kenneth S. K. Tung ◽  
Daniel M. Musher

The in vivo and in vitro immunoglobulin G plaque-forming cell responses to sheep erythrocytes (SRBC) are nearly obliterated during disseminated syphilitic infection (3 to 8 weeks post-intravenous injection) in rabbits. Splenic and lymph node cells obtained from infected rabbits during this time period were capable of suppressing the normal in vitro responses of uninfected, SRBC-primed cells. Cell-free washings of cells from infected animals were also suppressive. This finding coupled with the fact that treatment of infected cells with proteolytic enzymes abrogated the suppressive effect constitute arguments against involvement of a specific suppressor cell population. The incidence of elevated levels of circulating immune complexes in the sera of rabbits with disseminated disease was also significantly different from that of uninfected controls or infected rabbits before the onset or after the regression of lesions. When added to cultures of lymphocytes from uninfected, SRBC-sensitized rabbits, sera containing complexes caused dose-related suppression of the in vitro immunoglobulin responses. Unlike immune complexes, no correlation was found between the presence of mucopolysaccharide materials and the stage of infection or the ability of serum to suppress the immunoglobulin responses to SRBC.


Reproduction ◽  
2021 ◽  
Author(s):  
Marina Izvolskaia ◽  
Vasilina Ignatiuk ◽  
Ayshat Ismailova ◽  
Viktoria Sharova ◽  
Liudmila Zakharova

Sexual performance in adult male rats is highly sensitive to prenatal stress which can affect the functionality of the reproductive system and various brain structures involved in modulating sexual behavior. The immunomodulatory effect of mouse IgG on reproductive maturity in male offspring after LPS exposure in vivo and in vitro was studied. Prenatal IgG injection (20 µg / mouse) had a positive impact on the puberty of male mice whose mothers were exposed to LPS (100 µg / kg) on the 12th day of pregnancy. The number of Sertoli cells were increased, whereas the body weight and the number of symplastic spermatids were decreased in offspring as compared to LPS-treated animals. Besides, IgG had a positive effect on altered hormone levels: reduced estradiol level on the 5th and 14th postnatal days and increased testosterone level on the 30th postnatal day in blood that led to an increased number of mounting attempts in sexually mature males. The cAMP-dependent pathway may be involved in the regulation of the LPS-induced inflammation. IgG reduced the increased level of cAMP in mouse peritoneal macrophages activated by LPS in vitro. IgG is able to modulate inflammation processes, but its exposure time is important.


1994 ◽  
Vol 266 (6) ◽  
pp. L593-L611 ◽  
Author(s):  
M. D. Evans ◽  
W. A. Pryor

The proteinase-antiproteinase theory for the pathogenesis of emphysema proposes that the connective tissue destruction associated with emphysema arises from excessive proteinase activity in the lower respiratory tract. For this reason, the relative activities of neutrophil elastase and alpha 1-proteinase inhibitor (alpha 1-PI) are considered important. Most emphysema is observed in smokers; therefore, alpha 1-PI has been studied as a target for smoke-induced damage. Damage to alpha 1-PI in lung fluid could occur by several mechanisms involving species delivered to the lung by cigarette smoke and/or stimulated inflammatory cells. Oxidative damage to alpha 1-PI has received particular attention, since both cigarette smoke and inflammatory cells are rich sources of oxidants. In this article we review almost two decades of research on mechanistic studies of damage to alpha 1-PI by cigarette smoke and phagocytic cells in vitro, studies emphasizing the importance of elastinolytic activity in the pathogenesis of emphysema in vivo and studies of human lung lavage fluid to detect defects in alpha 1-PI at the molecular and functional levels.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Lia Danelishvili ◽  
Lmar Babrak ◽  
Sasha J. Rose ◽  
Jamie Everman ◽  
Luiz E. Bermudez

ABSTRACT Inhibition of apoptotic death of macrophages by Mycobacterium tuberculosis represents an important mechanism of virulence that results in pathogen survival both in vitro and in vivo. To identify M. tuberculosis virulence determinants involved in the modulation of apoptosis, we previously screened a transposon bank of mutants in human macrophages, and an M. tuberculosis clone with a nonfunctional Rv3354 gene was identified as incompetent to suppress apoptosis. Here, we show that the Rv3354 gene encodes a protein kinase that is secreted within mononuclear phagocytic cells and is required for M. tuberculosis virulence. The Rv3354 effector targets the metalloprotease (JAMM) domain within subunit 5 of the COP9 signalosome (CSN5), resulting in suppression of apoptosis and in the destabilization of CSN function and regulatory cullin-RING ubiquitin E3 enzymatic activity. Our observation suggests that alteration of the metalloprotease activity of CSN by Rv3354 possibly prevents the ubiquitin-dependent proteolysis of M. tuberculosis-secreted proteins. IMPORTANCE Macrophage protein degradation is regulated by a protein complex called a signalosome. One of the signalosomes associated with activation of ubiquitin and protein labeling for degradation was found to interact with a secreted protein from M. tuberculosis, which binds to the complex and inactivates it. The interference with the ability to inactivate bacterial proteins secreted in the phagocyte cytosol may have crucial importance for bacterial survival within the phagocyte.


Sign in / Sign up

Export Citation Format

Share Document