Synovial Fluid Mesenchymal Stem Cells for Knee Arthritis and Cartilage Defects: A Review of the Literature

Author(s):  
William Fang ◽  
ZhiTao Sun ◽  
Xiao Chen ◽  
Bo Han ◽  
C. Thomas Vangsness

AbstractMesenchymal stem cells (MSCs) are adult stem cells that have the ability to self-renew and differentiate into several cell lineages including adipocytes, chondrocytes, tenocytes, bones, and myoblasts. These properties make the cell a promising candidate for regenerative medicine applications, especially when dealing with sports injuries in the knee. MSCs can be isolated from almost every type of adult tissue. However, most of the current research focuses on MSCs derived from bone marrow, adipose, and placenta derived products. Synovial fluid-derived MSCs (SF-MSCs) are relatively overlooked but have demonstrated promising therapeutic properties including possessing higher chondrogenic proliferation capabilities than other types of MSCs. Interestingly, SF-MSC population has shown to increase exponentially in patients with joint injury or disease, pointing to a potential use as a biomarker or as a treatment of some orthopaedic disorders. In this review, we go over the current literature on synovial fluid-derived MSCs including the characterization, the animal studies, and discuss future perspectives.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ilona Kalaszczynska ◽  
Katarzyna Ferdyn

Around 5 million annual births in EU and 131 million worldwide give a unique opportunity to collect lifesaving Wharton’s jelly derived mesenchymal stem cells (WJ-MSC). Evidences that these cells possess therapeutic properties are constantly accumulating. Collection of WJ-MSC is done at the time of delivery and it is easy and devoid of side effects associated with collection of adult stem cells from bone marrow or adipose tissue. Likewise, their rate of proliferation, immune privileged status, lack of ethical concerns, nontumorigenic properties make them ideal for both autologous and allogeneic use in regenerative medicine applications. This review provides an outline of the recent findings related to WJ-MSC therapeutic effects and possible advantage they possess over MSC from other sources. Results of first clinical trials conducted to treat immune disorders are highlighted.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Roberto Berebichez-Fridman ◽  
Ricardo Gómez-García ◽  
Julio Granados-Montiel ◽  
Enrique Berebichez-Fastlicht ◽  
Anell Olivos-Meza ◽  
...  

Only select tissues and organs are able to spontaneously regenerate after disease or trauma, and this regenerative capacity diminishes over time. Human stem cell research explores therapeutic regenerative approaches to treat various conditions. Mesenchymal stem cells (MSCs) are derived from adult stem cells; they are multipotent and exert anti-inflammatory and immunomodulatory effects. They can differentiate into multiple cell types of the mesenchyme, for example, endothelial cells, osteoblasts, chondrocytes, fibroblasts, tenocytes, vascular smooth muscle cells, and sarcomere muscular cells. MSCs are easily obtained and can be cultivated and expanded in vitro; thus, they represent a promising and encouraging treatment approach in orthopedic surgery. Here, we review the application of MSCs to various orthopedic conditions, namely, orthopedic trauma; muscle injury; articular cartilage defects and osteoarthritis; meniscal injuries; bone disease; nerve, tendon, and ligament injuries; spinal cord injuries; intervertebral disc problems; pediatrics; and rotator cuff repair. The use of MSCs in orthopedics may transition the practice in the field from predominately surgical replacement and reconstruction to bioregeneration and prevention. However, additional research is necessary to explore the safety and effectiveness of MSC treatment in orthopedics, as well as applications in other medical specialties.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Cihangir Cakici ◽  
Bugra Buyrukcu ◽  
Gokhan Duruksu ◽  
Ahmet Hakan Haliloglu ◽  
Ayca Aksoy ◽  
...  

The recent reports on the treatment of azoospermia patients, in which spermatozoa could not be traced in their testes, are focused more on the potential use of adult stem cells, like mesenchymal stem cells (MSCs). The aim of this study was to demonstrate the potential use of MSCs derived from adipose tissue in the treatment of azoospermia using rat disease models. After busulfan application, the rats (n=20) were injected with the GFP+MSCs into left rete testes. After 12 weeks, the testes with cell injection (right testes) were compared to control (left testes) after dimensional and immunohistochemical analyses. Testes treated with MSCs appeared morphologically normal, but they were atrophic in rats without stem cell treatment, in which the seminiferous tubules were empty. Spermatogenesis was detected, not in every but in some tubules of cell-treated testes. GFP+/VASA+and GFP+/SCP1+cells in testes indicated the transdifferentiation of MSCs into spermatogenetic cells in the appropriate microenvironment. Rats with cell treatment were mated to show the full recovery of spermatogenesis, and continuous generations were obtained. The expression of GFP was detected in the mesenchymal stem cells derived from adipose tissue and bone marrow and also in the sperms of offspring. In conclusion, MSCs might be studied for the same purpose in humans in future.


Author(s):  
Mohammad Saeedi ◽  
Muhammad Sadeqi Nezhad ◽  
Fatemeh Mehranfar ◽  
Mahdieh Golpour ◽  
Mohammad Ali Esakandari ◽  
...  

: Mesenchymal stem cells (MSCs), a form of adult stem cells, are known to have a self-renewing property and the potential to specialize into a multitude of cells and tissues such as adipocytes, cartilage cells, and fibroblasts. MSCs can migrate and home to the desired target zone where inflammation is present. The unique characteristics of MSCs in repairing, differentiation, regeneration, and its high capacity of immune modulation has attracted tremendous attention for exerting them in clinical purposes, as they contribute to tissue regeneration process and anti-tumor activity. The MSCs-based treatment has demonstrated remarkable applicability towards various diseases such as heart and bone malignancies, and cancer cells. Importantly, genetically engineered MSCs, as a state-of-the-art therapeutic approach, could address some clinical hurdles by systemic secretion of cytokines and other agents with a short half-life and high toxicity. Therefore, understanding the biological aspects and the characteristics of MSCs is an imperative issue of concern. Herein, we provide an overview of the therapeutic application and the biological features of MSCs against different inflammatory diseases and cancer cells. We further shed light on MSCs physiological interaction, such as migration, homing, and tissue repairing mechanisms with different healthy and inflamed tissues.


2020 ◽  
Vol 15 (7) ◽  
pp. 623-638
Author(s):  
Saeideh Gholamzadeh Khoei ◽  
Fateme Karimi Dermani ◽  
Sara Malih ◽  
Nashmin Fayazi ◽  
Mohsen Sheykhhasan

Background: Cardiovascular disease (CVD), including disorders of cardiac muscle and vascular, is the major cause of death globally. Many unsuccessful attempts have been made to intervene in the disease's pathogenesis and treatment. Stem cell-based therapies, as a regeneration strategy, cast a new hope for CVD treatment. One of the most well-known stem cells is mesenchymal stem cells (MSCs), classified as one of the adult stem cells and can be obtained from different tissues. These cells have superior properties, such as proliferation and highly specialized differentiation. On the other hand, they have the potential to modulate the immune system and anti-inflammatory activity. One of their most important features is the secreting the extracellular vesicles (EVs) like exosomes (EXOs) as an intercellular communication system mediating the different physiological and pathophysiological affairs. Methods: In this review study, the importance of MSC and its secretory exosomes for the treatment of heart disease has been together and specifically addressed and the use of these promising natural and accessible agents is predicted to replace the current treatment modalities even faster than we imagine. Results: MSC derived EXOs by providing a pro-regenerative condition allowing innate stem cells to repair damaged tissues successfully. As a result, MSCs are considered as the appropriate cellular source in regenerative medicine. In the plethora of experiments, MSCs and MSC-EXOs have been used for the treatment and regeneration of heart diseases and myocardial lesions. Conclusions: Administration of MSCs has been provided a replacement therapeutic option for heart regeneration, obtaining great attention among the basic researcher and the medical doctors.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 667
Author(s):  
Gabriella Racchetti ◽  
Jacopo Meldolesi

Mesenchymal stem cells (MSCs), the cells distributed in the stromas of the body, are known for various properties including replication, the potential of various differentiations, the immune-related processes including inflammation. About two decades ago, these cells were shown to play relevant roles in the therapy of numerous diseases, dependent on their immune regulation and their release of cytokines and growth factors, with ensuing activation of favorable enzymes and processes. Such discovery induced great increase of their investigation. Soon thereafter, however, it became clear that therapeutic actions of MSCs are risky, accompanied by serious drawbacks and defects. MSC therapy has been therefore reduced to a few diseases, replaced for the others by their extracellular vesicles, the MSC-EVs. The latter vesicles recapitulate most therapeutic actions of MSCs, with equal or even better efficacies and without the serious drawbacks of the parent cells. In addition, MSC-EVs are characterized by many advantages, among which are their heterogeneities dependent on the stromas of origin, the alleviation of cell aging, the regulation of immune responses and inflammation. Here we illustrate the MSC-EV therapeutic effects, largely mediated by specific miRNAs, covering various diseases and pathological processes occurring in the bones, heart and vessels, kidney, and brain. MSC-EVs operate also on the development of cancers and on COVID-19, where they alleviate the organ lesions induced by the virus. Therapy by MSC-EVs can be improved by combination of their innate potential to engineering processes inducing precise targeting and transfer of drugs. The unique properties of MSC-EVs explain their intense studies, carried out with extraordinary success. Although not yet developed to clinical practice, the perspectives for proximal future are encouraging.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 880
Author(s):  
Shamsul Bin Sulaiman ◽  
Shiplu Roy Chowdhury ◽  
Mohd Fauzi Bin Mh Busra ◽  
Rizal Bin Abdul Rani ◽  
Nor Hamdan Bin Mohamad Yahaya ◽  
...  

The tissue engineering approach in osteoarthritic cell therapy often requires the delivery of a substantially high cell number due to the low engraftment efficiency as a result of low affinity binding of implanted cells to the targeted tissue. A modification towards the cell membrane that provides specific epitope for antibody binding to a target tissue may be a plausible solution to increase engraftment. In this study, we intercalated palmitated protein G (PPG) with mesenchymal stem cells (MSCs) and antibody, and evaluated their effects on the properties of MSCs either in monolayer state or in a 3D culture state (gelatin microsphere, GM). Bone marrow MSCs were intercalated with PPG (PPG-MSCs), followed by coating with type II collagen antibody (PPG-MSC-Ab). The effect of PPG and antibody conjugation on the MSC proliferation and multilineage differentiation capabilities both in monolayer and GM cultures was evaluated. PPG did not affect MSC proliferation and differentiation either in monolayer or 3D culture. The PPG-MSCs were successfully conjugated with the type II collagen antibody. Both PPG-MSCs with and without antibody conjugation did not alter MSC proliferation, stemness, and the collagen, aggrecan, and sGAG expression profiles. Assessment of the osteochondral defect explant revealed that the PPG-MSC-Ab micromass was able to attach within 48 h onto the osteochondral surface. Antibody-conjugated MSCs in GM culture is a potential method for targeted delivery of MSCs in future therapy of cartilage defects and osteoarthritis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ameneh Jafari ◽  
Mostafa Rezaei-Tavirani ◽  
Behrouz Farhadihosseinabadi ◽  
Hakimeh Zali ◽  
Hassan Niknejad

AbstractCancer is a leading cause of death in both developed and developing countries, and because of population growth and aging, it is a growing medical burden worldwide. With robust development in medicine, the use of stem cells has opened new treatment modalities in cancer therapy. In adult stem cells, mesenchymal stem cells (MSCs) are showing rising promise in cancer treatment due to their unique properties. Among different sources of MSCs, human amniotic fluid/membrane is an attractive and suitable reservoir. There are conflicting opinions about the role of human amniotic membrane/fluid mesenchymal stem cells (hAMSCS/hAFMSCs) in cancer, as some studies demonstrating the anticancer effects of these cells and others suggesting their progressive effects on cancer. This review focuses on recent findings about the role of hAMSCs/hAFMSCs in cancer treatment and summarizes the suppressing as well as promoting effects of these cells on cancer progression and underling mechanisms.


Sign in / Sign up

Export Citation Format

Share Document