scholarly journals Publisher’s Note: “Role of metal contacts on the electric and thermoelectric response of hBN/WSe2 based transistors” [J. Appl. Phys. 130, 185102 (2021)]

2021 ◽  
Vol 130 (24) ◽  
pp. 249902
Author(s):  
Salvatore Timpa ◽  
Mehrdad Rahimi ◽  
Jacko Rastikian ◽  
Stéphan Suffit ◽  
François Mallet ◽  
...  
Keyword(s):  
Author(s):  
L.J. Chen ◽  
Y.F. Hsieh

One measure of the maturity of a device technology is the ease and reliability of applying contact metallurgy. Compared to metal contact of silicon, the status of GaAs metallization is still at its primitive stage. With the advent of GaAs MESFET and integrated circuits, very stringent requirements were placed on their metal contacts. During the past few years, extensive researches have been conducted in the area of Au-Ge-Ni in order to lower contact resistances and improve uniformity. In this paper, we report the results of TEM study of interfacial reactions between Ni and GaAs as part of the attempt to understand the role of nickel in Au-Ge-Ni contact of GaAs.N-type, Si-doped, (001) oriented GaAs wafers, 15 mil in thickness, were grown by gradient-freeze method. Nickel thin films, 300Å in thickness, were e-gun deposited on GaAs wafers. The samples were then annealed in dry N2 in a 3-zone diffusion furnace at temperatures 200°C - 600°C for 5-180 minutes. Thin foils for TEM examinations were prepared by chemical polishing from the GaA.s side. TEM investigations were performed with JE0L- 100B and JE0L-200CX electron microscopes.


2021 ◽  
Vol 130 (18) ◽  
pp. 185102
Author(s):  
Salvatore Timpa ◽  
Mehrdad Rahimi ◽  
Jacko Rastikian ◽  
Stéphan Suffit ◽  
François Mallet ◽  
...  
Keyword(s):  

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1589 ◽  
Author(s):  
Simone M. P. Meroni ◽  
Katherine E. A. Hooper ◽  
Tom Dunlop ◽  
Jenny A. Baker ◽  
David Worsley ◽  
...  

The fully printable carbon triple-mesoscopic perovskite solar cell (C-PSC) has already demonstrated good efficiency and long-term stability, opening the possibility of lab-to-fab transition. Modules based on C-PSC architecture have been reported and, at present, are achieved through the accurate registration of each of the patterned layers using screen-printing. Modules based on this approach were reported with geometric fill factor (g-FF) as high as 70%. Another approach to create the interconnects, the so-called scribing method, was reported to achieve more than 90% g-FF for architectures based on evaporated metal contacts, i.e., without a carbon counter electrode. Here, for the first time, we adopt the scribing method to selectively remove materials within a C-PSC. This approach allowed a deep and selective scribe to open an aperture from the transparent electrode through all the layers, including the blocking layer, enabling a direct contact between the electrodes in the interconnects. In this work, a systematic study of the interconnection area between cells is discussed, showing the key role of the FTO/carbon contact. Furthermore, a module on 10 × 10 cm2 substrate with the optimised design showing efficiency over 10% is also demonstrated.


2018 ◽  
Vol 924 ◽  
pp. 339-344 ◽  
Author(s):  
Fabrizio Roccaforte ◽  
Marilena Vivona ◽  
Giuseppe Greco ◽  
Raffaella Lo Nigro ◽  
Filippo Giannazzo ◽  
...  

The physics and technology of metal/semiconductor interfaces are key-points in the development of silicon carbide (SiC) based devices. Although in the last decade, the metal to 4H-SiC contacts, either Ohmic or Schottky type, have been extensively investigated with important achievements, these remain even now an intriguing topic since metal contacts are fundamental bricks of all electronic devices. Hence, their comprehension is at the base of the improvement of the performances of simple devices and complex systems. In this context, this paper aims to highlight some relevant aspects related to metal/semiconductor contacts to SiC, both on n-type and p-type, with an emphasis on the role of the barrier and on the carrier transport mechanisms at the interfaces.


1993 ◽  
Vol 297 ◽  
Author(s):  
E. Fortunato ◽  
M. Vieira ◽  
L. Ferreira ◽  
C.N. Carvalho ◽  
G. Lavareda ◽  
...  

We have developed a rectangular dual-axis large area Position Sensitive Detector (PSD), with 5 cm × 5 cm detection area, based on PIN hydrogenated amorphous silicon (a-Si:H) technology, produced by Plasma Enhanced Chemical Vapor Deposition (PECVD). The metal contacts are located in the four edges of the detected area, two of them located on the back side of the ITO/PIN/A1 structure and the others two located in the front side. The key factors of the detectors resolution and linearity are the thickness uniformity of the different layers, the geometry and the contacts location. Besides that, edge effects on the sensor's corner disturb the linearity of the detector. In this paper we present results concerning the linearity of the detector as well as its optoelectronic characteristics and the role of the i-layer thickness on the final sensor performances.


2015 ◽  
Vol 79 (5) ◽  
pp. 1099-1109 ◽  
Author(s):  
Luca Bindi ◽  
Emil Makovicky

AbstractWe have characterized the crystal structure of natural kutinaite, a rare mineral from the ores of Černý Důl, Czech Republic, by single-crystal X-ray diffraction and chemical analysis. We found that the structure of natural kutinaite is not identical to that of synthetic Cu14Ag6As7, previously reported to be cubic, space group Pm3m. Although topologically similar, the structure of natural kutinaite is indeed tetragonal, space group P4/mmm, with cell parameters: a = 11.789(2), c = 11.766(2) Å, V = 1635.5(4) Å3 and Z = 4. Electron microprobe analyses pointed to the (K,Tl)0.25Cu14Ag6As6.75 stoichiometry (Z = 4), or (K, Tl)Cu56Ag24As27 with Z = 16. The crystal structure of an untwinned crystal has been refined to R1 = 2.61%. It consists of clusters of eight edge-sharing tetrahedra of Cu, which alternate in a 3D chess-board manner with octahedral clusters of six Ag atoms. The latter are surrounded by triangularly coordinated copper in eight faces of a cuboctahedron. The last structure components are large cavities containing partly occupied (K,Tl) sites, coordinated by 18 Ag and As ligands. The structure is full of direct metal-metal contacts although As plays the role of anion, associating especially with copper.


Nano Letters ◽  
2013 ◽  
Vol 13 (5) ◽  
pp. 1983-1990 ◽  
Author(s):  
Wei Liu ◽  
Jiahao Kang ◽  
Deblina Sarkar ◽  
Yasin Khatami ◽  
Debdeep Jena ◽  
...  

MRS Bulletin ◽  
2004 ◽  
Vol 29 (6) ◽  
pp. 403-410 ◽  
Author(s):  
Phaedon Avouris

AbstractCarbon nanotubes (CNTs) are one-dimensional nanostructures with unique properties. This article discusses why CNTs provide an ideal basis for a future carbonbased nanoelectronic technology, focusing specifically on single-carbon-nanotube fieldeffect transistors (CNT-FETs). Results of transport experiments and theoretical modeling will be used to address such issues as the nature of the switching mechanism, the role of the metal contacts, the role of the environment, the FET scaling properties, and the use of these findings to produce high-performance p-type, n-type, and ambipolar CNT-FETs and simple intra-nanotube circuits. CNTs are also direct-gap nanostructures that show promise in the field of optoelectronics. This article briefly reviews their optical behavior and presents results that show that ambipolar CNT-FETs can be used to produce electrically controlled light sources based on radiative electron–hole recombination. The reverse process—that is, the generation of photocurrents by the irradiation of single CNT—FETs—and photoconductivity spectra of individual CNTs are also demonstrated.


Sign in / Sign up

Export Citation Format

Share Document