Grain yield and flowering of some introduced grain legumes in South Australia

1975 ◽  
Vol 15 (75) ◽  
pp. 556 ◽  
Author(s):  
JH Silsbury

Data are presented for time of flowering, total shoot dry weight and grain yield of White Brunswick pea (Pisum sativum), six introduced peas and one introduction each of Lathyrus sativus and Lathyrus cicera from ten plot experiments conducted in South Australia over the period 1955-1 960.None of the introduced legumes flowered earlier than White Brunswick peas and only one, possibly, has a greater capacity for higher grain yield. L. cicera on the other hand gave 25 per cent greater yield over all sites and seasons with an average of 2.84 tonne ha-1.The ratio between grain yield and total shoot dry weight varied with genotype and between seasons with a genotype. A low ratio was not always associated with low dry matter production.

1994 ◽  
Vol 51 (3) ◽  
pp. 453-458 ◽  
Author(s):  
R.G. Camacho ◽  
D.F. Caraballo

A greenhouse experiment was carried out to evaluate the responses among 10 maize (Zea mays L.) genotypes under drought stress. Seeds were planted in washed sand in plastic pots. The research was established in a completely random design with ten treatments and three replicate pots. The plants were harvested four weeks after sowning, and leaf area per plant (LA), root volume (RV), longest root length (LRL), plant height (PH), fresh (RFW) and dry weight (ROW) of roots, shoot dry weight (SOW), RDW/SDW ratio, and total dry matter production (TDM) were determined. Significant varietal differences for all characters were found, except for LRL. The data obtained allowed to identify Cargill-163 as a poor genotype at low water supply. Danac-3006, FM-6, Sefloarca-91, Ceniap PB-8, and Tocorón-300 hybrids showed the best behaviour in terms of RDW/SDW ratio and root volume. On the other hand, root dry weight was identified as the best indicator and easiest characteristic to determine the drought-tolerance of maize plant.


1983 ◽  
Vol 23 (120) ◽  
pp. 73 ◽  
Author(s):  
RD Graham ◽  
PE Geytenbeek ◽  
BC Radcliffe

A hexaploid triticale from Mexico and local cultivars of wheat, rye and barley, each at five levels of fertilizer nitrogen (0, 35, 70, 105 and 140 kg N/ha) with four replications, were grown in a field experiment at Mintaro, South Australia. A visually discernible response to nitrogen fertilizer by all four genotypes from an early stage was confirmed by quantitative sampling at tiliering, anthesis and maturity. Responses in plant dry weight to 105 kg N/ha were maintained until anthesis but grain yield responses were significant only at 35 kg N/ha. Total dry matter production responses at maturity to more than 35 kg N/ha were small. Numbers of tillers and heads were increased by nitrogen additions up to 140 and 105 kg N/ha, respectively, and plant height measurements showed general increases to 70 kg N/ha with significant lodging at higher nitrogen levels in both rye and triticale. For all genotypes, thousand grain weight decreased with increasing level of nitrogen supply while grain and straw nitrogen increased up to levels of 140 and 105 kg N/ha, respectively. Nitrogen supply had little effect on maturity, plants at 0 and 140 kg N/ha reaching anthesis less than a day apart. The lack of a significant nitrogen x genotype interaction in nearly all the data suggests that the triticale does not differ in its nitrogen nutrition from the traditional cereals. Triticale consistently outyielded the other cereals in total dry matter production followed by the rye, wheat and barley in that order. Grain yield was highest in the wheat and least in the rye, the latter also being the least responsive to nitrogen. The advantage of the triticale lay in its high grain protein and lysine content combined with good yield.


1978 ◽  
Vol 91 (1) ◽  
pp. 31-45 ◽  
Author(s):  
I. Pearman ◽  
S. M. Thomas ◽  
G. N. Thorne

SummaryEight amounts of nitrogen ranging from 0 to 210 kg N/ha were applied to two tall and one semi-dwarf variety of winter wheat in the spring of 1975 and 1976. The tall varieties were Cappelle-Desprez and Maris Huntsman; the semi-dwarf variety was Maris Fundin in 1975 and Hobbit in 1976. Interactions between varieties and nitrogen were few and small compared with the main effects. All varieties produced their maximum grain yields with 180 kg N/ha. The yield of the semi-dwarf varieties, but not the others, decreased slightly with more nitrogen.Cappelle-Desprez yielded less grain than the other varieties in both years. In 1975 the yields of Maris Fundin and Maris Huntsman were similar and in 1976 Hobbit yielded more than Maris Huntsman. The varieties had similar numbers of ears at maturity and similar patterns of tillering. The semi-dwarf varieties had most grains per spikelet, and hence grains per ear, and Cappelle-Desprez had least. The semi-dwarf varieties had the smallest grains. The semi-dwarf varieties had less straw than the other varieties and hence the largest ratios of grain to total above-ground dry weight. The decrease in dry weight of stem and leaves between anthesis and maturity was similar for all varieties. In 1975 the efficiency of the top two leaves plus top internode in producing grain was the same for all varieties, but in 1976 Hobbit was more efficient than the other two. There were some small differences between varieties in nutrient uptake that were not related to differences in growth. Maris Fundin tended to have a greater phosphorus and potassium content than the tall varieties. Hobbit contained slightly less nitrogen than the tall varieties at maturity, and had a smaller concentration of nitrogen in the grain.Applying 210 kg N/ha doubled grain yield in 1975. Applying nitrogen resulted in a largeincrease in number of ears and a small increase in number of grains per ear due to the development of more fertile spikelets per ear. Nitrogen decreased dry weight per grain, especially of the semi-dwarf varieties. With extra nitrogen, straw dry weight at maturity, shoot dry weight atanthesis and leaf area were all increased relatively more than grain yield, and stems lost moredry weight between anthesis and maturity than without nitrogen. The year 1976 was exceptionallydry and nitrogen had only small effects in that it affected neither straw dry weight nor numberof ears but slightly increased grain yield by increasing the number of spikelets and number of grains per spikelet. It also increased leaf area proportionately to grain yield. In 1975 nitrogen increased evaporation of water from the crop before anthesis but decreased it after anthesis, even though it continued to increase the extraction of water from below 90 cm.


Weed Science ◽  
1984 ◽  
Vol 32 (5) ◽  
pp. 631-637 ◽  
Author(s):  
William W. Donald

Jointed goatgrass (Aegilops cylindrica Host. ♯3 AEGCY) has a quantitative requirement for vernalization in order to flower. In greenhouse and field studies, increasing periods of vernalization progressively reduced the number of days needed for plants to mature following transfer from the cold treatment to favorable growing conditions. Plants that had been vernalized at 3 ± 2 C for 8 weeks as imbibed seed took 120 days to flower following transfer to the greenhouse. Unvernalized controls flowered 197 to 222 days after planting in the greenhouse. Lengthening periods of vernalization from 2 to 8 weeks increased the number of seedheads per plant and dry weight per seedhead. Vernalized plants partitioned more dry matter into seedheads than unvernalized controls. The ratio of seedhead dry weight to vegetative shoot dry weight increased with duration of vernalization, even though vernalization did not alter total shoot dry-matter production. In field studies, plants that were established in the fall flowered sooner and more synchronously after resumption of growth in the spring than those that were planted in the spring and flowered in the summer. Plants seeded after May failed to flower in the same summer.


1970 ◽  
Vol 24 (2) ◽  
pp. 95-99
Author(s):  
M Asadul Haque Bhuiyan ◽  
Mosharraf Hossain Mian

Experiments with or without Bradyrhizobium was carried out with five mungbean varieties at Bangladesh Agricultural University Farm during kharif-I 2001 and kharif-I 2002 seasons to observe nodulation, biomass production and yield of mungbean. Significant influences of the mungbean varieties were observed on nodulation, biomass production and yield. BARI Mung-2 produced the highest nodule number, nodule weight, shoot weight, seed yield (1.03 t/ha in 2001 and 0.78 t/ha in 2002) and stover yield (2.24 t/ha in 2001 and 2.01 t/ha in 2002). Application of Bradyrhizobium inoculant produced significant effect on nodulation, shoot dry weight, seed and stover yields in both trials conducted in two consecutive years. Seed inoculation significantly increased seed (0.98 t/ha in 2001, 27% increase over control and 0.75 t/ha in 2002, 29% increase over control) and stover (2.31 t/ha in 2001 and 2.04 t/ha in 2002) yields of mungbean. Inoculated BARI Mung-2 produced the highest nodulation, dry matter production, seed and stover yields. Considering nodulation, biomass production and seed and yields, BARI Mung-2 was found as the best variety among the five. BARI Mung-5 produced the second highest seed yield followed by BARI Mung-4 and BINA Mung-2, and the lowest seed yield was observed in Barisal local. Keywords: Mungbean, Nodulation, Bradyrhizobium DOI: http://dx.doi.org/10.3329/bjm.v24i2.1251 Bangladesh J Microbiol, Volume 24, Number 2, December 2007, pp 95-99


1992 ◽  
Vol 43 (5) ◽  
pp. 987 ◽  
Author(s):  
RE Holloway ◽  
AM Alston

Wheat (Triticum aestivum L. cv. Warigal) was grown in a glasshouse in deep pots (0.125 x 0.125 x 1.2 m) containing sieved solonized brown soil (calcixerollic xerochrept) comprising 0.2 m sandy loam topsoil above 0.6 m treated calcareous sandy loam subsoil and a base layer of light clay 0.26 m thick. The subsoil was treated with a mixture of salts (0, 13, 39, 75 mmolc kg-1) and with boric acid (0, 20, 38 and 73 mg B kg-1) in factorial combination. The soil was initially watered to field capacity and water use was determined by regularly weighing the pots. The soil was allowed to dry gradually during the season, but the weights of the pots were not permitted to fall below that corresponding to 17% of the available water holding capacity of the soil. Tillering, dry weight of shoots and grain, and root length density were determined. Water-use efficiency was calculated with respect to total dry weight and grain production. Salt decreased tillering, dry matter production, grain yield, root length and water-use efficiency (total dry weight): it increased sodium and decreased boron concentrations in the plants. Boron decreased dry matter production (but not tillering), grain yield, root length and water-use efficiency (total dry weight and grain yield): it increased the concentrations of boron and decreased the concentration of sodium in the plants. At the concentrations of salt and boron used (which cover the range normally encountered in subsoils in much of Upper Eyre Peninsula), boron had more deleterious effects on wheat than did salt. Yield was depressed by salt at concentrations of sodium in the tissue commonly found in field-grown plants.


1977 ◽  
Vol 88 (2) ◽  
pp. 391-397 ◽  
Author(s):  
H. G. Jones ◽  
E. J. M. Kirby

SummaeyThe effects of several detillering treatments on dry-matter production and grain yield in barley were investigated in a series of pot experiments using two water regimes. When ample water was provided, even quite severe reductions in the number of tillers only slightly reduced grain yield in spite of large effects on total shoot dry weight. When all the plants were grown with the same amount of water, however, the plants with few tillers tended to have greater grain yield, higher water use efficiency (in terms of grain yield) and higher harvest index than the plants permitted to tiller freely. This effect was probably related to the greater transpiration rates from the freely tillering plants which led to their suffering a greater degree of water stress than the plants with few tillers. This led to the freely tillering plants having a greater proportion of sterile ears and a lower harvest index. Water stress apparently had no effect on the grain yield of the main shoot or first tiller. It is concluded that genotypes which produce few large tillers having a high rate of survival should be able to achieve relatively high yields in drought conditions without sacrificing yield potential under optimal conditions.


Helia ◽  
2001 ◽  
Vol 24 (35) ◽  
pp. 135-148
Author(s):  
Mohammed El Midaoui ◽  
Ahmed Talouizte ◽  
Benbella Mohamed ◽  
Serieys Hervé ◽  
Ait Houssa Abdelhadi ◽  
...  

SUMMARYAn experiment has been carried out in order to study the behaviour under mineral deficiency of three sunflower genotypes, a population variety (Oro 9) and two hybrids (Mirasol and Albena). Sunflower seedlings were submitted to five treatments: N deficiency (N0), P deficiency (P0), K deficiency (K0), N and K deficiency (N0K0) and a control. Plants were harvested when they reached 3-4 true pairs of leaves. Growth parameters measured (height, total leaf area, root length, root and shoot dry mater) were all significantly reduced by mineral deficiency. Leaf area was most reduced by N0 (-61%) and P0 (-56%). Total dry matter was most affected by N0 (-63%) and by N0K0 (-66%). Genotype comparisons showed that Oro 9 had the highest shoot dry matter while Albena had the lowest root dry matter. Effect of mineral deficiency on content and partitioning of N, P, K, Ca and Na was significant and varied according to treatments and among plant parts. Shoot dry weight was significantly correlated with root N content (r2=0.81) and root K content (r2=-0.61) for N0 and K0.


Weed Science ◽  
1988 ◽  
Vol 36 (6) ◽  
pp. 751-757 ◽  
Author(s):  
David T. Patterson ◽  
Maxine T. Highsmith ◽  
Elizabeth P. Flint

Cotton, spurred anoda, and velvetleaf were grown in controlled-environment chambers at day/night temperatures of 32/23 or 26/17 C and CO2concentrations of 350 or 700 ppm. After 5 weeks, CO2enrichment to 700 ppm increased dry matter accumulation by 38, 26, and 29% in cotton, spurred anoda, and velvetleaf, respectively, at 26/17 C and by 61, 41, and 29% at 32/23 C. Increases in leaf weight accounted for over 80% of the increase in total plant weight in cotton and spurred anoda in both temperature regimes. Leaf area was not increased by CO2enrichment. The observed increases in dry matter production with CO2enrichment were caused by increased net assimilation rate. In a second experiment, plants were grown at 350 ppm CO2and 29/23 C day/night for 17 days before exposure to 700 ppm CO2at 26/17 C for 1 week. Short-term exposure to high CO2significantly increased net assimilation rate, dry matter production, total dry weight, leaf dry weight, and specific leaf weight in comparison with plants maintained at 350 ppm CO2at 26/17 C. Increases in leaf weight in response to short-term CO2enrichment accounted for 100, 87, and 68% of the observed increase in total plant dry weight of cotton, spurred anoda, and velvetleaf, respectively. Comparisons among the species showed that CO2enrichment decreased the weed/crop ratio for total dry weight, possibly indicating a potential competitive advantage for cotton under elevated CO2, even at suboptimum temperatures.


Sign in / Sign up

Export Citation Format

Share Document