The importance of nitrate in ameliorating the effects of ammonium and urea nutrition on plant development: the relationships with free polyamines and plant proline contents

2005 ◽  
Vol 32 (11) ◽  
pp. 1057 ◽  
Author(s):  
Fabrice Houdusse ◽  
Angel M. Zamarreño ◽  
Maria Garnica ◽  
Josemaria García-Mina

In order to investigate the possible involvement of free polyamines and proline in the mechanism underlying the action of nitrate in correcting the negative effects associated with ammonium and urea nutrition in certain plant species, we studied plant contents of free polyamines and proline associated with nitrogen nutrition involving different nitrogen forms (nitrate, ammonium, urea) in two plant species, wheat and pepper. The results showed that ammonium nutrition and, to a lesser extent, urea nutrition were associated with significant increases in plant putrescine content that were well correlated with reductions in plant growth. These negative effects of ammonium and urea nutrition were corrected by the presence of nitrate in the nutrient solution; the presence of nitrate was also related to a significant decrease in the plant putrescine content. These results are compatible with a specific effect of nitrate reducing ammonium accumulation through the improvement of ammonium assimilation. As for the plant proline content, in pepper a slight increase in this parameter was associated with ammonium and urea nutrition, but it was also decreased by the presence of nitrate in the nutrient solution. These changes, however, were not so clearly related to the variations in plant growth as in the case of putrescine content. These results are compatible with the hypothesis that putrescine biosynthesis might be related to proline degradation by a specific pathway related to ammonium detoxification.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Grazieli F. Dueli ◽  
Og DeSouza ◽  
Servio P. Ribeiro

AbstractMetalliferous soils can selectively shape plant species’ physiology towards tolerance of high metal concentrations that are usually toxic to organisms. Some adapted plant species tolerate and accumulate metal in their tissues. These metals can serve as an elemental defence but can also decrease growth. Our investigation explored the capacity of natural metal accumulation in a tropical tree species, Eremanthus erythropappus (Asteraceae) and the effects of such bioaccumulation on plant responses to herbivory. Seedlings of E. erythropappus were grown in a glasshouse on soils that represented a metal concentration gradient (Al, Cu, Fe, Mn and Zn), and then the exposed plants were fed to the herbivores in a natural habitat. The effect of herbivory on plant growth was significantly mediated by foliar metal ion concentrations. The results suggest that herbivory effects on these plants change from negative to positive depending on soil metal concentration. Hence, these results provide quantitative evidence for a previously unsuspected interaction between herbivory and metal bioaccumulation on plant growth.


2010 ◽  
Vol 34 (6) ◽  
pp. 1823-1829 ◽  
Author(s):  
João Carlos Medeiros ◽  
Getulio Coutinho Figueiredo ◽  
Álvaro Luiz Mafra

To express the negative effects of soil compaction, some researchers use critical values for soil mechanical strength that severely impair plant growth. The aim of this study was to identify this critical compaction depth, to test the functionality of a new, portable penetrometer developed from a spring dynamometer, and compare it to an electronic penetrometer traditionally used in compaction studies of agricultural soils. Three soils with distinct texture were conventionally tilled using a disk plow, and cultivated with different plant species. The critical soil resistance defined to establish critical compaction depth was equal to 1.5 MPa. The results of the new equipment were similar to the electronic penetrometer, indicating its viability as a tool for assessing the soil physical conditions for plant growth.


2015 ◽  
Vol 33 (4) ◽  
pp. 422-427
Author(s):  
Francieli L Cardoso ◽  
Jerônimo L Andriolo ◽  
Miriane Dal Picio ◽  
Marcieli Piccin ◽  
Jéssica M Souza

ABSTRACT: The objective of this research was to test the hypothesis that when lettuce plants grow under root confinement, development and yield is reduced and that such negative effects may be compensated by increasing nitrogen availability in the rooting media. The experiment was conducted between August 11st and September 23rd 2011. Lettuce transplants, cultivar Stella, bearing five leaves, were planted in pots using sand as substrate. Treatments were three root confinement levels and five N concentrations in the nutrient solution, in a 3x5 factorial randomized experimental design with four replications. Root confinements were simulated by pot sizes of 2.5 dm³ (no confinement, the control); 1.0 dm³ (moderate) and 0.4 dm³ (severe). Nitrogen concentrations were: 5.55 (C1), 8.05 (C2), 10.55 (C3), 13.05 (C4) and 15.55 (C5) mmol/L. Interactions were observed between confinement levels and N concentrations. Plants grown under severe root confinement supplied by the nutrient solution at the concentration of 10.55 mmol/L of N reached leaf growth similar to those under no root confinement at 5.55 mmol/L of N. Increasing the N concentration in the nutrient solution enhanced shoot growth but decreased root growth. In lettuce plants grown under root confinement, plant growth is reduced and it is not compensated by increasing N fertilization rates. In both horticultural conventional or soilless production systems, managing practices for stimulate root growth has to be considered to maximize lettuce plant growth and nitrogen use efficiency.


1970 ◽  
Vol 17 ◽  
pp. 17-22 ◽  
Author(s):  
Kamal Singh ◽  
A. A. Khan ◽  
Iram Khan ◽  
Rose Rizvi ◽  
M. Saquib

Plant growth, yield, pigment and protein content of cow-pea were increased significantly at lower levels (20 and 40%) of fly ash but reverse was true at higher levels (80 and 100%). Soil amended by 60% fly ash could cause suppression in growth and yield in respect to 40% fly ash treated cow-pea plants but former was found at par with control (fly ash untreated plants). Maximum growth occurred in plants grown in soil amended with 40% fly ash. Nitrogen content of cow-pea was suppressed progressively in increasing levels of fly ash. Moreover,  Rhizobium leguminosarum  influenced the growth and yield positively but Meloidogyne javanica caused opposite effects particularly at 20 and 40% fly ash levels. The positive effects of R. leguminosarum were marked by M. javanica at initial levels. However, at 80 and 100% fly ash levels, the positive and negative effects of R. leguminosarum and/or M. javanica did not appear as insignificant difference persist among such treatments.Key words:  Meloidogyne javanica; Rhizobium leguminosarum; Fly ash; Growth; YieldDOI: 10.3126/eco.v17i0.4098Ecoprint An International Journal of Ecology Vol. 17, 2010 Page: 17-22 Uploaded date: 28 December, 2010  


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1161f-1161
Author(s):  
John D. Lea-Cox ◽  
Irwin E. Smith

Pine bark is utilized as a substrate in citrus nurseries in South Africa. The Nitrogen (N) content of pine bark is inherently low, and due to the volubility of N, must be supplied on a continual basis to ensure optimum growth rates of young citrus nursery stock. Three citrus rootstock (rough lemon, carrizo citrange and cleopatra mandarin) showed no difference in stem diameter or total dry mass (TDM) when supplied N at concentrations between 25 and 200 mg ·l-1 N in the nutrient solution over a 12 month growing period. Free leaf arginine increased when N was supplied at 400 mg·l-1 N. The form of N affected the growth of rough lemon. High NH4-N:NO3-N (75:25) ratios decreased TDM when Sulfur (S) was absent from the nutrient solution, but not if S was present. Free arginine increased in leaves at high NH4-N (No S) ratios, but not at high NH4-N (S supplied) ratios. Free leaf arginine was correlated with free leaf ammonia. These results have important implications for reducing the concentration of N in nutrient solutions used in citrus nurseries and may indicate that higher NH4-N ratios can be used when adequate S is also supplied.


Author(s):  
Mohammad Faizan ◽  
Fangyuan Yu ◽  
Chen Chen ◽  
Ahmad Faraz ◽  
Shamsul Hayat

: Abiotic stresses arising from atmosphere change belie plant growth and yield, leading to food reduction. The cultivation of a large number of crops in the contaminated environment is a main concern of environmentalists in the present time. To get food safety, a highly developed nanotechnology is a useful tool for promoting food production and assuring sustainability. Nanotechnology helps to better production in agriculture by promoting the efficiency of inputs and reducing relevant losses. This review examines the research performed in the past to show how zinc oxide nanoparticles (ZnO-NPs) are influencing the negative effects of abiotic stresses. Application of ZnO-NPs is one of the most effectual options for considerable enhancement of agricultural yield globally under stressful conditions. ZnO-NPs can transform the agricultural and food industry with the help of several innovative tools in reversing oxidative stress symptoms induced by abiotic stresses. In addition, the effect of ZnO-NPs on physiological, biochemical, and antioxidative activities in various plants have also been examined properly. This review summarizes the current understanding and the future possibilities of plant-ZnO-NPs research.


Horticulturae ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 140
Author(s):  
Avela Sogoni ◽  
Muhali Jimoh ◽  
Learnmore Kambizi ◽  
Charles Laubscher

Climate change, expanding soil salinization, and the developing shortages of freshwater have negatively affected crop production around the world. Seawater and salinized lands represent potentially cultivable areas for edible salt-tolerant plants. In the present study, the effect of salinity stress on plant growth, mineral composition (macro-and micro-nutrients), and antioxidant activity in dune spinach (Tetragonia decumbens) were evaluated. The treatments consisted of three salt concentrations, 50, 100, and 200 mM, produced by adding NaCl to the nutrient solution. The control treatment had no NaCl but was sustained and irrigated by the nutrient solution. Results revealed a significant increase in total yield, branch production, and ferric reducing antioxidant power in plants irrigated with nutrient solution incorporated with 50 mM NaCl. Conversely, an increased level of salinity (200 mM) caused a decrease in chlorophyll content (SPAD), while the phenolic content, as well as nitrogen, phosphorus, and sodium, increased. The results of this study indicate that there is potential for brackish water cultivation of dune spinach for consumption, especially in provinces experiencing the adverse effect of drought and salinity, where seawater or underground saline water could be diluted and used as irrigation water in the production of this vegetable.


2015 ◽  
Vol 42 (8) ◽  
pp. 770 ◽  
Author(s):  
Saqib Saleem Akhtar ◽  
Mathias Neumann Andersen ◽  
Muhammad Naveed ◽  
Zahir Ahmad Zahir ◽  
Fulai Liu

The objective of this work was to study the interactive effect of biochar and plant growth-promoting endophytic bacteria containing 1-aminocyclopropane-1-carboxylate deaminase and exopolysaccharide activity on mitigating salinity stress in maize (Zea mays L.). The plants were grown in a greenhouse under controlled conditions, and were subjected to separate or combined treatments of biochar (0% and 5%, w/w) and two endophytic bacterial strains (Burkholderia phytofirmans (PsJN) and Enterobacter sp. (FD17)) and salinity stress. The results indicated that salinity significantly decreased the growth of maize, whereas both biochar and inoculation mitigated the negative effects of salinity on maize performance either by decreasing the xylem Na+ concentration ([Na+]xylem) uptake or by maintaining nutrient balance within the plant, especially when the two treatments were applied in combination. Moreover, in biochar-amended saline soil, strain FD17 performed significantly better than did PsJN in reducing [Na+]xylem. Our results suggested that inoculation of plants with endophytic baterial strains along with biochar amendment could be an effective approach for sustaining crop production in salt-affected soils.


Sign in / Sign up

Export Citation Format

Share Document