Hormonal regulation of source - sink relations to maintain crop productivity under salinity: a case study of root-to-shoot signalling in tomato

2010 ◽  
Vol 37 (7) ◽  
pp. 592 ◽  
Author(s):  
Francisco Pérez-Alfocea ◽  
Alfonso Albacete ◽  
Michel E. Ghanem ◽  
Ian C. Dodd

Salinity decreases crop yield first by reducing growth of assimilate-consuming sink organs and, second, by decreasing assimilate production in photosynthetically active source tissues. Although much work has focussed on controlling the accumulation of toxic ions (mainly Na+ and Cl–), the search for primary growth limiting factor(s) continues. The root, by sensing environmental constraints of the soil, may influence root-to-shoot signalling to control shoot growth and physiology, and ultimately agricultural productivity. Hormonal signals, such as cytokinins, ABA, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid and the auxin indole-3-acetic acid may coordinate assimilate production and usage in competing sinks (biomass partitioning). Hormonal regulation of source–sink relations during the osmotic phase of salinity (independent of specific ions) affects whole-plant energy availability to prolong the maintenance of growth, root function and ion homeostasis, and could be critical to delay the accumulation of Na+ or any other ion to toxic levels. This viewpoint emphasises that simultaneously maintaining growth and delaying early leaf senescence is necessary to increase crop yield in salt-affected soils.

2018 ◽  
Author(s):  
Tian-Gen Chang ◽  
Xin-Guang Zhu

AbstractOn the face of the rapid advances in genome editing technology and greatly expanded knowledge on plant genome and genes, there is a strong demand to develop an effective tool to guide designing crops for higher yields. Here we developed a highly mechanistic model of Whole plAnt Carbon Nitrogen Interaction (WACNI), which predicts crop yield based on major metabolic and biophysical processes in source, sink and transport tissues. WACNI accurately predicted the yield responses of so far reported source, sink and transport related genetic manipulations on rice grain yields. Systematic sensitivity analysis with WACNI was used to classify the source, sink and transport related molecular processes into four categories, i.e. universal yield enhancers, universal yield inhibitors, conditional yield enhancers and weak yield regulators. Simulations using WACNI further show that even without a major change in leaf photosynthetic properties, 54.6% to 73% grain yield increase can be potentially achieved by optimizing these molecular processes during the rice grain filling period while simply combining all the ‘superior’ molecular modules together cannot achieve the optimal yield level. A common macroscopic feature in all these designed high-yield lines is that they all show ‘a sustained and steady growth of grain sink’, which might be used as a generic selection criteria in high-yield rice breeding. Overall, WACNI can serve as a tool to facilitate plant source sink interaction research and guide future crops breeding by design.One sentence summaryA mechanistic model of source, sink flow model is developed and used to demonstrate that optimization of the whole plant carbon nitrogen metabolism can dramatically increase crop yield potential.


Author(s):  
José L Araus ◽  
Ruth Sanchez-Bragado ◽  
Rubén Vicente

Abstract Increasing the speed of breeding to enhance crop productivity and adaptation to abiotic stresses is urgently needed. The perception that a second Green Revolution should be implemented is widely established within the scientific community and among stakeholders. In recent decades, different alternatives have been proposed for elevating crop yield through manipulation of leaf photosynthetic efficiency. However, none of these have delivered practical or relevant outputs. Indeed, the actual increases in photosynthetic rates are not expected to translate into yield increases beyond 10-15%. Furthermore, instantaneous rates of leaf photosynthesis are not necessarily the reference target for research. Yield is the result of canopy photosynthesis, understood as the contribution of laminar and non-laminar organs over time, within which concepts such as canopy architecture, stay-green or non-laminar photosynthesis need to be taken into account. Moreover, retrospective studies show that photosynthetic improvements have been more common at the canopy level. Nevertheless, it is crucial to place canopy photosynthesis in the context of whole-plant functioning, which includes sink/source balance and transport of photoassimilates, and the availability and uptake of nutrients, such as nitrogen in particular. Overcoming this challenge will only be feasible if a multiscale crop focus combined with a multidisciplinary scientific approach is adopted.


2020 ◽  
Author(s):  
Tian-Gen Chang ◽  
Xin-Guang Zhu

ABSTRACTCrop yield is co-determined by photosynthetic potential of source organs, and pattern of partitioning and utilization of photosynthate among sink organs. Although correlation between source sink relation and grain yield has been studied for a century, a quantitative understanding of the metabolic basis of source sink interaction is lacking. Here, we describe a mechanistic model of Whole plAnt Carbon Nitrogen Interaction (WACNI), enabling precise prediction of plant physiological dynamics during the grain filling period by reconstructing primary metabolic and biophysical processes in source, sink and transport organs. To get a specified range of parameters required to quantify the enzymatic kinetics in rice, a data set is established based on case studies and natural variation surveys in the past decades. The parameterized model quantitatively predicts plant carbon and nitrogen budget upon various scenarios, ranging from field management and environmental perturbation to genetic manipulation, thus enabling dissection of the precise role of such alterations in crop yield formation. Model simulations further reveal the importance of re-allocating activity of carbon/nitrogen metabolic and transport processes for a plant physiological ideotype to maximize crop yield.


Author(s):  
Sujata Mulik

Agriculture sector in India is facing rigorous problem to maximize crop productivity. More than 60 percent of the crop still depends on climatic factors like rainfall, temperature, humidity. This paper discusses the use of various Data Mining applications in agriculture sector. Data Mining is used to solve various problems in agriculture sector. It can be used it to solve yield prediction.  The problem of yield prediction is a major problem that remains to be solved based on available data. Data mining techniques are the better choices for this purpose. Different Data Mining techniques are used and evaluated in agriculture for estimating the future year's crop production. In this paper we have focused on predicting crop yield productivity of kharif & Rabi Crops. 


2021 ◽  
Vol 9 (4) ◽  
pp. 809
Author(s):  
Hiroya Yurimoto ◽  
Kosuke Shiraishi ◽  
Yasuyoshi Sakai

Methanol is abundant in the phyllosphere, the surface of the above-ground parts of plants, and its concentration oscillates diurnally. The phyllosphere is one of the major habitats for a group of microorganisms, the so-called methylotrophs, that utilize one-carbon (C1) compounds, such as methanol and methane, as their sole source of carbon and energy. Among phyllospheric microorganisms, methanol-utilizing methylotrophic bacteria, known as pink-pigmented facultative methylotrophs (PPFMs), are the dominant colonizers of the phyllosphere, and some of them have recently been shown to have the ability to promote plant growth and increase crop yield. In addition to PPFMs, methanol-utilizing yeasts can proliferate and survive in the phyllosphere by using unique molecular and cellular mechanisms to adapt to the stressful phyllosphere environment. This review describes our current understanding of the physiology of methylotrophic bacteria and yeasts living in the phyllosphere where they are exposed to diurnal cycles of environmental conditions.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 126
Author(s):  
Judit Barroso ◽  
Nicholas G. Genna

Russian thistle (Salsola tragus L.) is a persistent post-harvest issue in the Pacific Northwest (PNW). Farmers need more integrated management strategies to control it. Russian thistle emergence, mortality, plant biomass, seed production, and crop yield were evaluated in spring wheat and spring barley planted in 18- or 36-cm row spacing and seeded at 73 or 140 kg ha−1 in Pendleton and Moro, Oregon, during 2018 and 2019. Russian thistle emergence was lower and mortality was higher in spring barley than in spring wheat. However, little to no effect of row spacing or seeding rate was observed on Russian thistle emergence or mortality. Russian thistle seed production and plant biomass followed crop productivity; higher crop yield produced higher Russian thistle biomass and seed production and lower crop yield produced lower weed biomass and seed production. Crop yield with Russian thistle pressure was improved in 2018 with 18-cm rows or by seeding at 140 kg ha−1 while no effect was observed in 2019. Increasing seeding rates or planting spring crops in narrow rows may be effective at increasing yield in low rainfall years of the PNW, such as in 2018. No effect may be observed in years with higher rainfall than normal, such as in 2019.


2020 ◽  
Vol 2 ◽  
Author(s):  
Nathalie Colbach ◽  
Sandrine Petit ◽  
Bruno Chauvel ◽  
Violaine Deytieux ◽  
Martin Lechenet ◽  
...  

The growing recognition of the environmental and health issues associated to pesticide use requires to investigate how to manage weeds with less or no herbicides in arable farming while maintaining crop productivity. The questions of weed harmfulness, herbicide efficacy, the effects of herbicide use on crop yields, and the effect of reducing herbicides on crop production have been addressed over the years but results and interpretations often appear contradictory. In this paper, we critically analyze studies that have focused on the herbicide use, weeds and crop yield nexus. We identified many inconsistencies in the published results and demonstrate that these often stem from differences in the methodologies used and in the choice of the conceptual model that links the three items. Our main findings are: (1) although our review confirms that herbicide reduction increases weed infestation if not compensated by other cultural techniques, there are many shortcomings in the different methods used to assess the impact of weeds on crop production; (2) Reducing herbicide use rarely results in increased crop yield loss due to weeds if farmers compensate low herbicide use by other efficient cultural practices; (3) There is a need for comprehensive studies describing the effect of cropping systems on crop production that explicitly include weeds and disentangle the impact of herbicides from the effect of other practices on weeds and on crop production. We propose a framework that presents all the links and feed-backs that must be considered when analyzing the herbicide-weed-crop yield nexus. We then provide a number of methodological recommendations for future studies. We conclude that, since weeds are causing yield loss, reduced herbicide use and maintained crop productivity necessarily requires a redesign of cropping systems. These new systems should include both agronomic and biodiversity-based levers acting in concert to deliver sustainable weed management.


2021 ◽  
Vol 11 (2) ◽  
pp. 750
Author(s):  
Roberta Pastorelli ◽  
Giuseppe Valboa ◽  
Alessandra Lagomarsino ◽  
Arturo Fabiani ◽  
Stefania Simoncini ◽  
...  

Digestate from biogas production can be recycled to the soil as conditioner/fertilizer improving the environmental sustainability of the energy supply chain. In a three-year maize-triticale rotation, we investigated the short-term effects of digestate on soil physical, chemical, and microbiological properties and evaluated its effectiveness in complementing the mineral fertilizers. Digestate soil treatments consisted of combined applications of the whole digestate and its mechanically separated solid fraction. Digestate increased soil total organic C, total N and K contents. Soil bulk density was not affected by treatments, while aggregate stability showed a transient improvement due to digestate treatments. A decrement of the transmission pores proportion and an increment of fissures was observed in digestate treated soils. Soil microbial community was only transiently affected by digestate treatments and no soil contamination from Clostridiaceae-related bacteria were observed. Digestate can significantly impair seed germination when applied at low dilution ratios. Crop yield under digestate treatment was similar to ordinary mineral-based fertilization. Overall, our experiment proved that the agronomic recycling of digestate from biogas production maintained a fair crop yield and soil quality. Digestate was confirmed as a valid resource for sustainable management of soil fertility under energy-crop farming, by combining a good attitude as a fertilizer with the ability to compensate for soil organic C loss.


Sign in / Sign up

Export Citation Format

Share Document