Plot size matters: interference from intergenotypic competition in plant phenotyping studies

2014 ◽  
Vol 41 (2) ◽  
pp. 107 ◽  
Author(s):  
Greg J. Rebetzke ◽  
Ralph (Tony) A. Fischer ◽  
Anthony F. van Herwaarden ◽  
Dave G. Bonnett ◽  
Karine Chenu ◽  
...  

Genetic and physiological studies often comprise genotypes diverse in vigour, size and flowering time. This can make the phenotyping of complex traits challenging, particularly those associated with canopy development, biomass and yield, as the environment of one genotype can be influenced by a neighbouring genotype. Limited seed and space may encourage field assessment in single, spaced rows or in small, unbordered plots, whereas the convenience of a controlled environment or greenhouse makes pot studies tempting. However, the relevance of such growing conditions to commercial field-grown crops is unclear and often doubtful. Competition for water, light and nutrients necessary for canopy growth will be variable where immediate neighbours are genetically different, particularly under stress conditions, where competition for resources and influence on productivity is greatest. Small hills and rod-rows maximise the potential for intergenotypic competition that is not relevant to a crop’s performance in monocultures. Response to resource availability will typically vary among diverse genotypes to alter genotype ranking and reduce heritability for all growth-related traits, with the possible exception of harvest index. Validation of pot experiments to performance in canopies in the field is essential, whereas the planting of multirow plots and the simple exclusion of plot borders at harvest will increase experimental precision and confidence in genotype performance in target environments.

HortScience ◽  
2019 ◽  
Vol 54 (10) ◽  
pp. 1757-1761 ◽  
Author(s):  
Marie Abbey ◽  
Neil O. Anderson ◽  
Chengyan Yue ◽  
Michele Schermann ◽  
Nicholas Phelps ◽  
...  

Aquaponics, the combination of hydroponics and aquaculture into one growing system, is a controlled environment production system that potentially has increased environmental and consumer benefits over traditional production methods. There are many different ways to configure aquaponics systems that include different fish species, water circulation, lighting, plant species/density, and more. We tested three cultivars of lettuce, a common aquaponically produced crop, for yield in multiple aquaponic systems and conditions over a 13-month period in Minnesota. Four different aquaponic configurations and four types of fish were tested over the course of the experiment. There was no addition of supplemental nutrients to the systems to evaluate the differences between treatments and set a baseline. There was no difference in yield between lettuce produced aquaponically and those grown in soilless medium. However, there was a difference in yield between lettuce grown with different fish treatments. The tilapia treatment produced higher average yield than yellow perch. There was a difference between cultivars, with higher average yield from loose-leaf bunch cultivars (Salanova, Skyphos) than the bibb type (Rex). Average yield for all but one treatment was above that of reported commercial field production, making lettuce a competitive aquaponic crop in most systems.


Author(s):  
R. V. Kulyan

The Russian Research Institute of Floriculture and Subtropical Crops has the citrus germplasm collection, in total over 150 genotypes of various origins including 30 wild and semi-wild relatives. As a result of controlled hybridization in 17 crossings combinations of with the participation of relatives of citrus plants, new 769 hybrid offspring were obtained, which combine the traits of both the maternal and paternal genotypes. Analyzing the populations, promising combinations were highlighted: C. reticulata × Fortunella margarita (47.1%); C. x natsudaidai × 3252 (42.1%) and C. reticulata × C. reticulata ‘Cleopatra’ (40.9%) to create the gene pool of distant hybrids. From the mentioned combinations of crossings the greatest percent of seedlings which phenotypes tend to cultivated varieties was received. This hybrid material is a valuable source for isolating forms that are resistant to extreme environmental factors. According to phenotypic characteristics, hybrids were divided into three categories: I – Cultural, II – Semi-wild and III – Wild. Of the first category, the largest number 87 prospective forms were selected, and can be of interest for further breeding. As a result of the study of interspecific hybrid seedlings, 137 promising forms have been identified, which are carriers the complex traits such as dwarfism, thornless, early maturity and increased winter hardiness. From this set 17 genotypes were selected, which received the status of an elite forms, which successfully pass the primary test, and will be also useful in further breeding work for creating sources with a complex of positive traits and on breeding new varieties of citrus crops resistant to growing conditions.


Author(s):  
Anna Langstroff ◽  
Marc C. Heuermann ◽  
Andreas Stahl ◽  
Astrid Junker

AbstractRising temperatures and changing precipitation patterns will affect agricultural production substantially, exposing crops to extended and more intense periods of stress. Therefore, breeding of varieties adapted to the constantly changing conditions is pivotal to enable a quantitatively and qualitatively adequate crop production despite the negative effects of climate change. As it is not yet possible to select for adaptation to future climate scenarios in the field, simulations of future conditions in controlled-environment (CE) phenotyping facilities contribute to the understanding of the plant response to special stress conditions and help breeders to select ideal genotypes which cope with future conditions. CE phenotyping facilities enable the collection of traits that are not easy to measure under field conditions and the assessment of a plant‘s phenotype under repeatable, clearly defined environmental conditions using automated, non-invasive, high-throughput methods. However, extrapolation and translation of results obtained under controlled environments to field environments is ambiguous. This review outlines the opportunities and challenges of phenotyping approaches under controlled environments complementary to conventional field trials. It gives an overview on general principles and introduces existing phenotyping facilities that take up the challenge of obtaining reliable and robust phenotypic data on climate response traits to support breeding of climate-adapted crops.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1009B-1009
Author(s):  
Marc W. van Iersel

Do you accurately measure and report the growing conditions of your controlled environment experiments? Conditions in controlled environment plant growth rooms and chambers should be reported in detail. This is important to allow replication of experiments on plants, to compare results among facilities, and to avoid artefacts due to uncontrolled variables. The International Committee for Controlled Environment Guidelines, with representatives from the U.K. Controlled Environment Users' Group, the North American Committee on Controlled Environment Technology and Use (NCR-101), and Australasian Controlled Environment Working Group (ACEWG), has developed guidlines to report environmental conditions in controlled environment experiments. These guidelines include measurements of light, temperature, humidity, CO2, air speed, and fertility. A brochure with these guidelines and a sample paragraph on how to include this information in a manuscript will be available.


2003 ◽  
Vol 93 (6) ◽  
pp. 666-674 ◽  
Author(s):  
M. H. P. W. Visker ◽  
L. C. P. Keizer ◽  
D. J. Budding ◽  
L. C. Van Loon ◽  
L. T. Colon ◽  
...  

The effects of plant age, leaf age, and leaf position on race-nonspecific resistance against Phytophthora infestans were investigated in a series of field and controlled environment experiments with five different potato (Solanum tuberosum) cultivars. Leaf position proved to be the most significant factor; apical leaves were far more resistant to late blight than basal leaves. Plant age and leaf age had only minor effects; therefore, the resistance of a specific leaf remained about the same during its entire lifetime. The gradual increase in late blight resistance from basal leaves to apical leaves appeared to be a general effect, irrespective of cultivar, growing conditions, or resistance test. Therefore, it is important to consider leaf position in tests for late blight resistance, because contrasts in resistance may be ascribed erroneously to differences between genotypes or treatments, whereas they are actually caused by differences in leaf position.


2000 ◽  
Vol 1 (1) ◽  
pp. 25
Author(s):  
L. Swart ◽  
P. Langenhoven

Roselle (Hibiscus sabdariffa L.) is an annual herb grown in China, Thailand, Mexico, and Africa. Different plant parts are used for cold and hot beverages, food ingredients, edible oil, and medicinal properties. In May 1999, a disease was observed in a commercial field of 6-month-old H. sabdariffa plants in Eshowe, KwaZulu-Natal, South Africa. Because the disease can result in plant death, Botrytis blight may have a significant impact on the establishment and yield of this crop in the field, especially under cool, wet growing conditions. Posted 10 June 2000.


HortScience ◽  
2004 ◽  
Vol 39 (1) ◽  
pp. 138-141
Author(s):  
José Antonio Saraiva Grossi ◽  
H. Brent Pemberton ◽  
Harvey J. Lang

Rooted liners of pot rose (Rosa L.) cultivars Meiferjac, Meigagul, Meighivon, Meishulo, Ruijef, Ruidodo, and Ruirosora were used to study the influence of cultivar and seasonal growing environment on growth and postharvest performance. Single-shoot plants were grown in controlled environment chambers simulating summer (30 °C day/21 °C night cycle with a 14-hour photoperiod) and winter (21 °C day/16 °C night cycle with a 10-hour photoperiod) greenhouse growing conditions. At flower developmental stage 2 (showing color, calyx reflexing, no petals reflexed), the plants were placed in a continuously lighted simulated interior evaluation room at 21 ± 1 °C under 15 μmol·m-2·s-1 photosynthetic photon flux from cool-white fluorescent lamps for postharvest evaluations. Plants had quicker flowering, smaller flower diameter, more compact growth, and smaller leaf area when grown under the summer environment compared to the winter environment. Most cultivars exhibited greater flower longevity on summer-grown plants when compared to winter-grown ones. `Ruirosora' did not exhibit this difference due to exceptional longevity on winter-grown plants. Also, the use of single-shoot plants was shown to be a potentially useful way to increase replication in small growing environments such as growth chambers.


2000 ◽  
Vol 122 (05) ◽  
pp. 74-76
Author(s):  
Michael Valenti

This article reviews how agricultural facilities can harvest about two crops per year. The controlled environment agriculture (CEA) facility is a hydroponic project that began operating in July 1999. It uses computer software to control lighting, environmental conditions, nutrient balance, water pH, and other parameters to create optimal lettuce-growing conditions. The agricultural facility’s story began 10 years ago, when a graduate student at Cornell University in Ithaca found that optimizing environmental conditions enabled him to grow seedlings for nurseries in 16 days, rather than the 35 days required by conventional agricultural nurseries. NYSERDA has conducted studies examining the total energy package of conventional agriculture, from producing seed to transporting vegetables to market, and found that northeastern controlled environment facilities will use less energy than shipping produce from the West Coast or South America. Growers also can tout the fact that their produce is grown without herbicides or pesticides, a major marketing advantage to attract consumers seeking organically grown produce.


1992 ◽  
Vol 6 (1) ◽  
pp. 68-76 ◽  
Author(s):  
David T. Patterson

Velvetleaf from Mississippi and Wisconsin and soybean (var. Williams) were grown in five temperature regimes (12/4, 19/11, 26/18, 33/25, and 40/32 C day/night) in controlled-environment chambers. Leaf appearance rates increased with temperature in both species, ranging from 0.06 to 0.69 leaves per day in velvetleaf and 0.07 to 0.38 leaves per day in soybean. The threshold temperature for leaf appearance in both species was 5 to 6 C. The largest leaves of both species were produced at 26/18 C. By 55 d after emergence, the greatest total leaf area per plant occurred at 26/18 C or above in both species. Reproductive development occurred earliest at 33/25 C in velvetleaf and at 26/18 C in soybean. This limited vegetative growth in velvetleaf more than in soybean. The weed/crop ratio for total leaf area increased with increasing temperature, indicating that velvetleaf probably would be more competitive with soybean under higher temperatures. The two populations of velvetleaf generally responded similarly to temperatures.


2020 ◽  
Vol 71 (1) ◽  
pp. 689-712 ◽  
Author(s):  
Michelle Watt ◽  
Fabio Fiorani ◽  
Björn Usadel ◽  
Uwe Rascher ◽  
Onno Muller ◽  
...  

Plant phenotyping enables noninvasive quantification of plant structure and function and interactions with environments. High-capacity phenotyping reaches hitherto inaccessible phenotypic characteristics. Diverse, challenging, and valuable applications of phenotyping have originated among scientists, prebreeders, and breeders as they study the phenotypic diversity of genetic resources and apply increasingly complex traits to crop improvement. Noninvasive technologies are used to analyze experimental and breeding populations. We cover the most recent research in controlled-environment and field phenotyping for seed, shoot, and root traits. Select field phenotyping technologies have become state of the art and show promise for speeding up the breeding process in early generations. We highlight the technologies behind the rapid advances in proximal and remote sensing of plants in fields. We conclude by discussing the new disciplines working with the phenotyping community: data science, to address the challenge of generating FAIR (findable, accessible, interoperable, and reusable) data, and robotics, to apply phenotyping directly on farms.


Sign in / Sign up

Export Citation Format

Share Document