88 EXPRESSION OF ENZYMES RELATED TO HOMOCYSTEINE METABOLISM AND HOMOCYSTEINE SENSITIVITY IN BOVINE PREIMPLANTATION EMBRYOS

2009 ◽  
Vol 21 (1) ◽  
pp. 145
Author(s):  
S. Ikeda ◽  
M. Sugimoto ◽  
S. Kume

Homocysteine is a nonessential amino acid produced through methionine metabolism. Elevation of homocysteine levels (hyperhomocysteinemia) increases intracellular S-adenosylhomocysteine (SAH). S-adenosylhomocysteine binds to methyltransferases (MT) with greater affinity than does S-adenosylmethionine, which is the universal methyl donor used by various cellular MT, including DNA and histone MT. Thus, SAH acts as a potent competitive inhibitor of methylation reactions. Therefore, disorder of homocysteine metabolism may affect cellular homeostasis in part through the process involving methylation reactions (Williams KT and Schalinske KL 2007 J. Nutr. 137, 311–314). Despite its predicted importance, the involvement of homocysteine metabolism in pre-implantation embryonic development remains unaddressed. In the present study, the expression of enzymes related to homocysteine metabolism in bovine pre-implantation embryos and the effects of homocysteine on the post-fertilization development of these embryos in vitro were investigated. Cumulus-enclosed oocytes obtained from slaughterhouse bovine ovaries were in vitro-matured (IVM) for 22 h in modified synthetic oviduct fluid (mSOF) supplemented with 10% v/v FCS and 0.2 IU mL–1 follicle-stimulating hormone. After IVM, the oocytes were subjected to IVF with Percoll gradient-selected sperm from one bull in an mSOF-based medium for 20 h. After IVF, presumptive zygotes were freed from the cumulus cells and cultured in mSOF up to Day 8 (IVF = Day 0). All cultures were performed at 38.5°C under 5% CO2, 5% O2, and 90% N2. Total RNA was extracted from individual blastocysts on Day 7 to 8 and reverse transcribed to cDNA using oligo(dT) primer. Transcripts for methionine adenosyltransferase 2A (MAT2A), MAT2B, adenosylhomocysteinase, methionine synthase, betaine-homocysteine MT, serine hydroxymethyltransferase 1, and 5,10-methylenetetrahydrofolate reductase were examined by qualitative PCR using bovine-specific primers for each gene and the cDNA as templates. β-Actin transcripts were used as an internal control. Moreover, presumptive zygotes after IVF were cultured in mSOF supplemented with 0 (control), 10, and 100 μm homocysteine, and development to cleavage stage and blastocyst was assessed on Day 3 and Day 7 and 8, respectively. The cultures were replicated 4 times using 561 embryos. The development data were statistically analyzed by using the general linear model. Transcripts for all genes examined were detected. Homocysteine added to the culture medium of bovine IVF embryos did not affect the cleavage rate (86.8, 83.3, and 84.3% for control, 10 μm, and 100 μm, respectively); however, blastocyst rate significantly decreased (P = 0.02) on Day 7 (12.8, 9.3, and 7.5%, respectively). The blastocyst rate on Day 8 showed no difference (P = 0.33) among the groups (24.4, 20.4, and 20.1%, respectively). These results indicate that a system for homocysteine metabolism is present in bovine pre-implantation embryos and that high homocysteine levels affect the developmental kinetics of these embryos. Supported by KAKENHI.

2010 ◽  
Vol 22 (1) ◽  
pp. 233
Author(s):  
L. V. M. Gulart ◽  
L. Gabriel ◽  
L. P. Salles ◽  
G. R. Gamas ◽  
D. K. Souza ◽  
...  

FSH at low concentrations affect embryo production. In vitro culture conditions also affect embryo production and embryonic expression of genes and alter oocyte competence to produce embryos. The search for better and less variable culture conditions simulating those in vivo has led to the development of several systems of oocyte in vitro maturation culture. To compare the efficiency of the systems of MIV we utilized 4 groups: (1) TCM-199 control; (2) α-minimal essential medium (MEM); 3) α-MEM + 1 ng of FSH; 4) α-MEM+ 10 ng of FSH. The medium of Group 1 is non-defined by the presence of fetal calf serum (10%). Groups 2, 3, and 4 are defined and polyvinyl alcohol (1%) was used as a macromolecule. Porcine FSH (1 IU mg-1) was used at 1 and 10 ng mL-1 and at 100 ng in defined and non-defined medium, respectively. Bovine ovaries were collected at an abbatoir. Oocytes (n = 1718) with homogeneous cytoplasm and with more than 3 layers of granulosa cells were used. Mature oocytes from the 4 treatments (11 replicates of each treatment) were inseminated with frozen-thawed, motile sperm separated by Percoll, using Sperm TALP HEPES medium. Presumptive zygotes with up to 2 or 3 layers of cumulus cells were cultured in 50-mL drops of SOF medium, supplemented with 10% FCS and 1 mg mL-1 BSA under mineral oil in a humid 5% CO2 atmosphere at 38.5°C after. Cleavage rate was evaluated 72 h post-insemination (hpi), and blastocyst rate was evaluated 168-192 hpi. Cleavage and blastocyst rates were calculated on the basis of number of presumptive zygotes. The expression of the following genes (Bax, Bcl-2, and conexin 43) was evaluated in blastocysts by RT-PCR. One-way ANOVA was used to compare blastocyst number. There was no difference in the proportion of embryos with more than 8 blastomeres in all groups tested, indicating that the rate of development during the first 72 hpi was similar for oocytes matured in chemically defined medium and for oocytes matured in medium containing serum. Bax is a pro-apoptotic marker and Bcl-2 an antiapoptotic marker. Connexin 43 (Cx43) may be a marker of embryo competence. Glyceraldehyde 3-phosphate dehydrogenase was used as internal control. The Bax gene was not expressed in any group. The Bcl-2 and Cx43 genes were expressed, mainly in the α-MEM 10. Although no differences were observed in blastocyst rate among the groups (30% to 40%), the strong expression of Bcl-2 and of Cx43 on the group containing 10 ng mL-1 of FSH may indicate that FSH could improve embryo quality under defined conditions. The authors thank FAP-DF, CNPq, FUNPE, FINATEC, CAPES, and Biovitro Tecnologia de Embrioes Ltda, for laboratory assistance and grants, and Frigorifico Ponte Alta, Brasília-DF, for supplying bovine ovaries.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 310-310
Author(s):  
Saulo Menegatti Zoca ◽  
Julie Walker ◽  
Taylor Andrews ◽  
Adalaide C Kline ◽  
Jerica J Rich ◽  
...  

Abstract Sire conception rate (SCR) is a field measure of fertility among bulls, but it can be influenced by several factors (Sperm transport, sperm-egg binding, early embryo development, etc). The objective of this study was to evaluate the relationship between SCR, sperm motility, SERPINA5 concentrations, and in vitro embryo development. Measurements were performed in 19 bulls with SCR values ranging from -7.7 to 4.45. For each bull, an aliquot of frozen-thawed semen was used for analyses of total (TMOT) and progressive (PROG) motility. Remaining semen was fixed with 2% formaldehyde, and concentration of SERPINA5 was determined by immunolocalization (antibody SERPINA5/Dylight405; PA5-79976-Invitrogen / ab201798-Abcam). Mean fluorescence intensity was determined in ~200 sperm heads/bull. Approximately 149 oocytes/bull were fertilized in vitro for embryo development analysis (cleavage and blastocyst rates). Statistical procedures were performed in SAS (9.4) using the procedures CORR for correlations (SCR, TMOT, PROG, SERPINA5, cleavage and blastocyst) and GLIMMIX for comparison of “field-fertility” (SCR divided in HIGH or LOW) and “field-embryo-fertility” (LOW-SCR sires were divided based on blastocyst rate (HIGH or LOW) resulting in two classifications; LOW-HIGH≥31% and LOW-LOW≤26%, respectively). There were positive correlations (P < 0.05) between cleavage-blastocyst (r=0.50), SERPINA5-cleavage (r=0.48), and TMOT-PROG (r=0.76). Sire SCR was not associated with SERPINA5, TMOT, PROG, cleavage and blastocyst rate (P > 0.52). Among LOW-SCR sires, LOW-LOW sires (-4.83±0.60) tended to have a better SCR score than LOW-HIGH (-6.18±0.42) sires (P = 0.08), but there were no differences (P > 0.43) between LOW-HIGH, LOW-LOW, and HIGH sires for SERPINA5, TMOT, PROG, and cleavage. In conclusion, some LOW SCR sires have good embryo development indicating a different mechanism for their low SCR; however, these differences in SCR could not be explained by TMOT, PROG, SERPINA5, cleavage and blastocyst. There were, however, positive correlations between cleavage-blastocyst rate, and SERPINA5-cleavage rate.


Zygote ◽  
2004 ◽  
Vol 12 (1) ◽  
pp. 75-80 ◽  
Author(s):  
Yue-Liang Zheng ◽  
Man-Xi Jiang ◽  
Yan-Ling Zhang ◽  
Qing-Yuan Sun ◽  
Da-Yuan Chen

This study assessed the effects of oocyte age, cumulus cells and injection methods on in vitro development of intracytoplasmic sperm injection (ICSI) rabbit embryos. Oocytes were recovered from female rabbits superovulated with PMSG and hCG, and epididymal sperm were collected from a fertile male rabbit. The oocyte was positioned with the first polar body at 12 o'clock position, and a microinjection needle containing a sperm was inserted into the oocyte at 3 o'clock. Oolemma breakage was achieved by aspirating ooplasm, and the aspirated ooplasm and sperm were re-injected into the oocyte. The injected oocytes were cultured in M199 medium containing 10% fetal calf serum at 38 °C with 5% CO2 in air. The results showed that oocytes injected at 1 h post-collection produced a higher (p<0.05) fertilization rate than those injected at 4 or 7 h post-collection. Blastocyst rate in the 1 h group was higher (p<0.05) than in the 7 h group. Denuded oocytes (group A) and oocytes with cumulus cells (group B) were injected, respectively. Rates of fertilization and development of ICSI embryos were not significantly different (p<0.05) between the two groups. Four ICSI methods were applied in this experiment. In methods 1 and 2, the needle tip was pushed across half the diameter of the oocyte, and oolemma breakage was achieved by either a single aspiration (method 1) or repeated aspiration and expulsion (method 2) of ooplasm. In methods 3 and 4, the needle tip was pushed to the oocyte periphery opposite the puncture site, and oolemma breakage was achieved by either a single aspiration (method 3) or repeated aspiration and expulsion (method 4) of ooplasm. Fertilization rate in method 2 was significantly higher (p<0.05) than in methods 1 and 3. Blastocyst rates were not significantly different (p<0.05) among methods 1, 3 and 4, but method 2 produced a higher (p<0.05) blastocyst rate than method 3.


2005 ◽  
Vol 17 (2) ◽  
pp. 181 ◽  
Author(s):  
D. Sage ◽  
P. Hassel ◽  
B. Petersen ◽  
W. Mysegades ◽  
P. Westermann ◽  
...  

Porcine nuclear transfer (NT) is an inefficient process and it is necessary to use as many as 120 NT embryos for each foster mother to obtain small litters of live piglets. In these experiments, we evaluated the effects of culture atmosphere and medium on the development of NT embryos by monitoring blastocyst rate and cell number of Day 6 blastocysts. Age matched IVF and parthenogenetic embryos were also evaluated for comparison. For all experiments a pool of oocytes was aspirated from ovaries collected in a local abattoir. Following aspiration, oocytes were allowed to mature for 40 h in North Carolina State University (NCSU)-37 medium (supplemented with cAMP and hCG/eCG for the first 22 h). After removal of the cumulus cells, denuded oocytes with polar bodies were selected for NT, enucleated, fused with fetal fibroblasts, and sequentially activated electrically and chemically by 3 h of treatment with 6-dimethylaminopurine (6-DMAP). A second group of oocytes from the same denuded pool were maintained in TL-HEPES medium and activated in parallel with the NT group to produce parthenogenetic embryos. A third group was fertilized with frozen-thawed epididymal semen and co-cultured for ∼12 h to give IVF embryos. All three treatment groups were subdivided into a control subgroup and an experimental subgroup. In the first experiment, we compared the effects of atmosphere (20% vs. 5% oxygen) on in vitro embryonic development in NCSU-23 medium. In the second experiment, we used only the 5% oxygen concentration and compared different culture media. One subgroup was maintained in standard NCSU-23 medium and the second subgroup was cultured in a two-step system for the first 58 h in modified NCSU-23 (without glucose but supplemented with 2.0 mM lactate and 0.2 mM pyruvate), followed by addition of glucose to give a final concentration of 5.55 mM. Data were statistically analyzed by analysis of variance and chi square test. Blastocyst rate and mean cell number in all three embryo groups were improved under 5% oxygen. The most dramatic effect was observed in the NT group, in which the blastocyst rate increased significantly (P < 0.001) from 6.7% ± 5.9 (n = 279) to 19.6% ± 8.9 (n = 250) and mean cell number increased from 17.7 ± 12.1 to 25.8 ± 10.3 cells per blastocyst. With 5% oxygen there was also an increase of blastocyst rates and mean cell numbers in both IVF and parthenogenetic groups. In the second experiment, blastocyst rate for NT embryos increased significantly (P < 0.05) from 21.8% ± 7.6 (n = 242) in conventional NCSU-23 to 31.5% ± 11.0 (n = 271) in the modified system whereas there was almost no difference in the mean cell number of both groups (29.2 ± 4.3 vs. 31.5 ± 5.3). In the groups of IVF and parthenogenetic embryos no difference was found. These results indicate that both the reduced oxygen and the modified culture medium are important for pre-implantation development of porcine nuclear transfer embryos.


Reproduction ◽  
2002 ◽  
pp. 683-689 ◽  
Author(s):  
M Ozawa ◽  
M Hirabayashi ◽  
Y Kanai

Mammalian preimplantation embryos are sensitive to maternal and direct heat stress. However, the mechanisms by which heat stress affects early embryonic development in vivo or in vitro are unknown. This study examined whether heat-stress-induced loss of developmental competence in mouse embryos was mediated by physiological changes in the maternal environment or by high temperatures alone. After fertilization, zygotes at the same stage were heat-stressed at 39.5 degrees C for 12 h either maternally (measured by maternal rectal temperature) or directly in culture. Zygotes in each group were cultured at 37.5 degrees C for a further 84 h to assess their developmental ability. Neither type of heat stress affected the first cleavage rate. However, the proportion of embryos that developed to morulae or blastocysts was significantly lower in the maternally heat-stressed group, but not in the directly heat-stressed group. Moreover, maternal heat stress significantly reduced intracellular glutathione concentrations and enhanced hydrogen peroxide concentrations in both zygotes and two-cell embryos that were recovered immediately after heat stress or 12 h later, respectively. In contrast, direct heat stress had little effect on concentrations of glutathione or hydrogen peroxide in cultured early embryos. These results demonstrate that maternal heat stress at the zygote stage reduces the developmental ability of mouse embryos via physiological changes in the maternal environment that lead to an increase in intracellular oxidative stress on the embryo.


2002 ◽  
Vol 14 (4) ◽  
pp. 191 ◽  
Author(s):  
M. A. Martinez-Diaz ◽  
K. Ikeda ◽  
Y. Takahashi

The effects of cycloheximide (CHX) treatment and the interval between fusion and activation on the development of pig nuclear transfer (NT) embryos constructed with enucleated oocytes and serum-starved granulosa/cumulus cells were examined. One group of couplets was fused and activated simultaneously (FAS) by a single electrical pulse (activation pulse). Another three groups of couplets were fused electricaly 1.5, 2.5 or 4.5 h before being subjected to the activation pulse (FBA). Each group was divided into two subgroups and incubated with or without CHX. The NT embryos treated with CHX showed a high and stable cleavage rate, regardless of the interval between fusion and activation; however, development to blastocysts was improved only when the NT embryos were subjected to FAS with CHX. These results indicate that CHX-sensitive events occurring shortly after FAS may be responsible for the development to blastocysts. Fusion pulse rarely activated M II oocytes, but rapidly dropped the p34cdc2 kinase activity in NT embryos. A pronucleus-like structure was observed 2-2.5 h after the activation pulse with CHX in NT embryos of both the FAS and FBA groups. Therefore, successive inactivation of M-phase promoting factor and cytostatic factor at a certain short interval may also play an important role in the development of NT embryos.


2017 ◽  
Vol 20 (1) ◽  
pp. 19-24 ◽  
Author(s):  
S. Prochowska ◽  
W. Niżański

Abstract The aim of this study was to provide a comparative analysis of in vitro fertilizing potential of frozen-thawed urethral and epididymal feline spermatozoa. Both types of semen were collected from 7 cats and cryopreserved in liquid nitrogen. To perform in vitro fertilization, both urethral and epididymal samples from the same individual were thawed and spermatozoa were co-incubated with in vitro matured cat oocytes. Obtained embryos were cultured in vitro for 7 days in a commercial medium. Cleavage rate, morula rate and blastocyst rate were calculated. Experiment was run in 10 replicates. The examined parameters showed no significant differences between urethral and epididymal spermatozoa (p>0.05). Cleavage rate and embryo’s development were highly variable between replicates, even for the different sperm samples collected from one individual. There was no significant correlation between fertilizing capacity of two types of spermatozoa collected from the same male. In this study we confirmed that cryopreserved urethral spermatozoa have equally good fertilizing potential as epididymal ones, and both can be successfully used for in vitro fertilization in cats with the use of commercial medium.


2006 ◽  
Vol 18 (2) ◽  
pp. 250
Author(s):  
M. G. Marques ◽  
A. B. Nascimento ◽  
V. P. Oliveira ◽  
A. R. S. Coutinho ◽  
M. E. O. A. Assumpção ◽  
...  

The present work evaluated the reversible meiosis inhibition effect on the development of swine embryos produced by in vitro fertilization (IVF) or parthenogenetic activation (PA). The efficiency of PZM3 and NCSU23 embryo culture media was also evaluated. Oocytes from ovaries collected at a slaughterhouse were subjected to IVM in two different groups: CHX (cycloheximide 5 µM for 10 h) and control, both with TCM-199 + 3.05 mM glucose + 0.91 mM sodium pyruvate + 10% porcine follicular fluid (pFF) + 0.57 mM cystein + 10 ng epidermal growth factor (EGF)/mL + 10 IU eCG/mL + 10 IU hCG/mL for the initial 22 h. In the remaining period (20 h for CHX and 22 h for control), medium without hormones was utilized. After IVM, oocytes were denuded and fertilized for 6 h (IFV) or the matured oocytes were submitted to activation by electric pulses (PA) (2 DC of 1.5 kV/cm for 30 µs), incubated for 1 h in culture medium with 10 μM of CHX, and again submitted to the same electric pulses for 60 µs. Embryo development was evaluated by cleavage rate on Day 3 and blastocyst rate and blastocyst cell number on Day 7 of culture. Cleavage and blastocyst rates were analyzed by the equality-of-two-ratios test and cell number by the Kruskal-Wallis and Mann-Whitney tests (P < 0.05). In relation to IVF, the PZM3 medium was more efficient than NCSU23 for cleavage rate in the CHX group (PZM3: 68.4%, NCSU23: 44.4%) and had a better blastocyst rate in the control group (PZM3: 13.4%, NCSU23: 5.6%). With reference to PA, NCSU23 presented better cleavage and blastocyst rates than PZM3 in the CHX group (NCSU23: 89.5%, PZM3: 78.5% and NCSU23: 20.4%, PZM3: 13.0%, respectively). In the control group, only the NCSU23 blastocyst rate was higher than that for PZM3 (NCSU23: 22.5%, PZM3: 10.8%). No culture medium effect on cell number mean of IVF and PA blastocysts was observed. Maturation block improved cleavage rates in IVF groups cultured with PZM3 (68.4% and 50.6%, respectively, for CHX and control) and in PA groups cultured with NCSU23 (89.5% and 80.3%, respectively, for CHX and control), but no improvement of blastocyst rates in both groups (IVF and PA) was verified. Table 1 below shows that maturation block decreased the IVF and increased the PA blastocyst cell numbers. As older oocytes are more effectively activated, oocytes blocked with CHX achieved the maturation stage faster than the control group, therefore resulting in high-quality PA blastocysts. In conclusion, PZM3 was more efficient for IVF embryo production in contrast to NCSU23, whereas NCSU23 can be indicated for PA embryo production. Moreover, maturation blockage with CHX influenced blastocyst cell number, decreasing in IVF embryos and increasing in PA embryos. Table 1. Mean (±SD) of blastocyst cell numbers for IVF or PA groups after in vitro maturation without (control) or with cycloheximide (CHX) and cultured in NCSU23 or PZM3 medium This work was supported by FAPESP 02/10747–1.


2006 ◽  
Vol 18 (2) ◽  
pp. 275
Author(s):  
H. S. Lee ◽  
Y. I. Seo ◽  
X. J. Yin ◽  
S. G. Cho ◽  
I. H. Bae ◽  
...  

In spite of our increased knowledge of in vitro oocyte maturation techniques, the success rate of obtaining mature canine oocytes in vitro remains very low compared with that for other domestic animals. The inefficient rate of meiotic resumption of canine oocytes is probably due to both the unique reproductive cycle and inappropriate in vitro maturation (IVM) medium. In an unpublished experiment, we found that the concentration of insulin was higher in estrus bitch serum (EBS; 8833 pg/mL) than in dog follicular fluid (DFF; preovulatory follicle, 122 pg/mL), which implies its possible role in the acquisition of oocyte competence. Therefore, in the present study we investigated the effects of supplementing the IVM medium with insulin on the incidence of maturation to metaphase II. Ovaries were collected from various stages of the estrous cycle by ovariohysterectomy, and oocytes with two or more intact cumulus layers and with a diameter >110 �m were selected and used for IVM. Oocytes were cultured in modified synthetic oviduct fluid (2004 Reprod. Nutr. Dev. 44, 105-109) supplemented with 10% EBS, 20 �g/mL estradiol, and different concentrations of insulin (0, 10, 100, or 1000 ng/mL) at 38.5�C, 5% CO2 in air. After 72 h, cumulus cells were removed from around oocytes using a small glass pipette. Denuded oocytes were fixed in 3.7% paraformaldehyde supplemented with 10 �g/mL Hoechst 33342 at room temperature for 40 min. Nuclear status was observed under UV light using a fluorescence microscope. The percentage of oocytes at the metaphase II stage was not different among the four groups 6.8, 1.8, 5.4, and 2.1% in the control, 10, 100, and 1000 ng/mL insulin groups, respectively. The incidence of oocytes with pronuclear-like structures or cleaving beyond the two-cell stage was not significant higher in the 10 and 100 ng/mL insulin treatment groups than in the control and 1000 ng/mL insulin groups 20.0 and 19.6% vs. 6.8 and 6.4%, respectively. These results indicate that the addition of insulin to the in vitro maturation medium of dog oocytes had no effect on the incidence of meiotic maturation to metaphase II, nor did it affect the frequency of occurrence of spontaneous oocyte activation.


2006 ◽  
Vol 18 (2) ◽  
pp. 143
Author(s):  
D. Salamone ◽  
M. Catala ◽  
A. Gibbons ◽  
F. Pereyra Bonnet ◽  
M. Cueto

Different types of somatic cells have been used as nucleus donors for cloning. Most of them were previously cultured in vitro as a monolayer through several plate passages. The experiment reported here was conducted to study the potential usages of granulosa and cumulus cells for cloning without previous culture as a monolayer. A first-plate-passage fibroblast was also used. Oocytes were aspirated by laparoscopy from Criolla goats and matured in TCM-199 + 5% FCS at 39°C for 24 h. Matured oocytes were denuded by vortexing for 3 min in TL HEPES with 1 mg/mL bovine testis hyaluronidase. Metaphases were assessed and oocytes were enucleated by visualization with Hoechst 33342 (5 μg/mL) under UV light (<6 s). Granulosa and cumulus cells were also recovered by laparoscopy and maintained in maturation medium in cryotube for 20 h at room temperature or 39°C, respectively. Goat adult ear fibroblasts were cultured for 1 or 2 weeks and used 2 days after confluence. All types of donor cells were transferred to the perivitlline space of enucleated oocytes and fused by an electrical pulse. After 2 h, activation was induced by incubation in TL-HEPES with 5 µM ionomycin for 4 min and 2 mM 6-DMAP for 3 h. The oocytes were then washed with TL-HEPES and cultured in SOF medium and atmosphere of 5% CO2 + 5% O2 + 90% N2. Cleavage (Day 2) and development to blastocysts (Day 6) were recorded and analyzed by chi-square test. The cleavage rate for non-plated granulosa cells was higher than for the other treatment goups; cumulus cells had a lower rate of development to blastocysts (Table 1). These results suggest that granulosa cells collected and maintained for 24 h at room temperature could be used to produce cloned blastocysts. Table 1. Effect of non-plated granulosa and cumulus cells and first passage fibroblasts as donor nucleus oocytes in goat cloning


Sign in / Sign up

Export Citation Format

Share Document