5 PROPYLENE GLYCOL FEEDING SUPPLEMENTATION MODIFIES INSULIN-LIKE GROWTH FACTOR SYSTEM GENE EXPRESSION IN CUMULUS–OOCYTE COMPLEXES AND THE EXPRESSION OF SELECTED CANDIDATE GENES IN EMBRYOS PRODUCED IN VITRO IN FEED-RESTRICTED HEIFERS

2015 ◽  
Vol 27 (1) ◽  
pp. 95
Author(s):  
G. Gamarra ◽  
C. Ponsart ◽  
S. Lacaze ◽  
F. Nuttinck ◽  
P. Mermillod ◽  
...  

Dietary supplementation with propylene glycol (PG) increases the rate of grade 1 embryos produced from feed restricted females (Gamarra et al. 2014 Reprod. Fertil. Dev.). The aim of this study was to evaluate if a PG feeding supplement could modify the expression profile of selected candidate genes that are important for in vitro embryo development and the gene expression patterns of the insulin-like growth factor (IGF) system in oocytes and cumulus cells in feed-restricted heifers. Feed-restricted heifers (n = 16, growth rate of 600 g day–1) received a single daily drench of 400 mL of water (group restricted, R) from Day 1 to Day 9 of a first synchronized oestrous cycle followed by 400 mL of PG from Day 1 to Day 9 of the second synchronized oestrous cycle (group restricted + PG, RPG). Ovum pick-up (OPU) was performed following superovulation, on Day 5 of the oestrous cycle to produce embryos in vitro and on Day 9 without superovulation to obtain oocytes and cumulus cells. The same protocol was used in control animals (n = 6, growth rate of 800 g day–1). Real-time PCR was used to determine the relative abundance of genes involved in lipid metabolism and storage (PLIN2, SCD), energy metabolism (ATP5A1, GLUT1), membrane permeability (AQP3), epigenetic marks (DNMT3a), apoptosis (BAX, TP53), and protein processing (HSPA9B) in grade 1 blastocysts, IGF1, IGF1R, IGFBP2, IGFBP4 in cumulus cells, and IGF1R and IGFBP2 in oocytes. Mann-Whitney nonparametric tests were performed to analyse gene expression results. The expression of PLIN2, ATP5A1, GLUT1, AQP3, DNMT3a, BAX, and HSPA9B were decreased in embryos collected from restricted compared with control animals. The expression levels of these genes were restored when females were supplemented with PG. The expression of TP53 and SCD were not affected. In cumulus cells, the expression levels of IGF1, IGF1R, and IGFBP4 were decreased in restricted compared with control animals. The expression levels of IGF1 and IGF1R were restored with PG supplementation. No differences were observed for the IGFBP2 gene. In the oocytes, no differences were observed for the expression levels of IGF1R and IGFBP2 genes. In conclusion, this work shows for the first time that feed restriction and dietary supplementation by PG in heifers produced changes in gene expression in blastocysts and modified the pattern of the IGF system in cumulus cells. These results suggest the existence of an epigenetic regulation induced by PG during follicular growth, which can regulate the level of gene expression up to the blastocyst stage. In general, PG supplementation of feed-restricted donors restored gene expression at the levels observed after normal feeding.

2016 ◽  
Vol 10_2016 ◽  
pp. 64-72
Author(s):  
Safronova N.A. Safronova ◽  
Kalinina E.A. Kalinina ◽  
Donnikov A.E. Donnikov ◽  
Burmenskaya O.V. Burmenskaya ◽  
Makarova N.P. Makarova ◽  
...  

2018 ◽  
Vol 30 (3) ◽  
pp. 417 ◽  
Author(s):  
G. Gamarra ◽  
C. Ponsart ◽  
S. Lacaze ◽  
F. Nuttinck ◽  
A. Cordova ◽  
...  

Dietary supplementation with propylene glycol (PG) increases in vitro production of high-quality embryos in feed-restricted heifers. The aim of the present study was to evaluate the effects of PG in feed-restricted heifers on follicular fluid insulin and insulin-like growth factor (IGF) 1 concentrations, expression of IGF system genes in oocytes and cumulus cells and the expression of selected genes in blastocysts. Feed-restricted (R) heifers were drenched with water or PG during induced oestrous cycles (400 mL of PG or water/drench, daily drenching at 1600 hours for the first 9 days of the oestrous cycle). Ovum pick-up (OPU) was performed after superovulation to produce in vitro embryos and without superovulation to recover oocytes, cumulus cells and follicular fluid. OPU was also performed in a control group (not feed restricted and no drenching). Follicular fluid IGF1 concentrations were reduced by R, and PG restored IGF1 concentrations to those seen in the control group. In cumulus cells, expression of IGF1, IGF1 receptor (IGF1R) and IGF binding protein 4 (IGFBP4) was decreased in the R group, and fully (IGF1 and IGF1R) or partially (IGFBP4) restored to control levels by PG. Blastocyst perilipin 2 (PLIN2; also known as adipophilin), Bcl-2-associated X protein (BAX), SCL2A1 (facilitated glucose/fructose transporter GLUT1), aquaporin 3 (AQP3), DNA (cytosine-5)-methyltransferase 3A (DNMT3A) and heat shock 70-kDa protein 9 (HSPA9B) expression were decreased in R heifers; PG restored the expression of the last four genes to control levels. In conclusion, these results suggest that, during follicular growth, PG exerts epigenetic regulatory effects on gene expression in blastocyst stage embryos.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1794
Author(s):  
Konstantina Stamperna ◽  
Themistoklis Giannoulis ◽  
Eleni Dovolou ◽  
Maria Kalemkeridou ◽  
Ioannis Nanas ◽  
...  

Heat shock protein 70 (HSP70) is a chaperon that stabilizes unfolded or partially folded proteins, preventing inappropriate inter- and intramolecular interactions. Here, we examined the developmental competence of in vitro matured oocytes exposed to heat stress with or without HSP70. Bovine oocytes were matured for 24 h at 39 °C without (group C39) or with HSP70 (group H39) and at 41 °C for the first 6 h, followed by 16 h at 39 °C with (group H41) or without HSP70 (group C41). After insemination, zygotes were cultured for 9 days at 39 °C. Cleavage and embryo yield were assessed 48 h post insemination and on days 7, 8, 9, respectively. Gene expression was assessed by RT-PCR in oocytes, cumulus cells and blastocysts. In C41, blastocysts formation rate was lower than in C39 and on day 9 it was lower than in H41. In oocytes, HSP70 enhanced the expression of three HSP genes regardless of incubation temperature. HSP70 at 39 °C led to tight coordination of gene expression in oocytes and blastocysts, but not in cumulus cells. Our results imply that HSP70, by preventing apoptosis, supporting signal transduction, and increasing antioxidant protection of the embryo, protects heat stressed maturing bovine oocyte and restores its developmental competence.


2021 ◽  
Vol 10 (2) ◽  
pp. 183
Author(s):  
Nadia Meyer ◽  
Lars Brodowski ◽  
Katja Richter ◽  
Constantin S. von Kaisenberg ◽  
Bianca Schröder-Heurich ◽  
...  

Endothelial dysfunction is a primary feature of several cardiovascular diseases. Endothelial colony-forming cells (ECFCs) represent a highly proliferative subtype of endothelial progenitor cells (EPCs), which are involved in neovascularization and vascular repair. Statins are known to improve the outcome of cardiovascular diseases via pleiotropic effects. We hypothesized that treatment with the 3-hydroxy-3-methyl-glutaryl–coenzyme A (HMG-CoA) reductase inhibitor pravastatin increases ECFCs’ functional capacities and regulates the expression of proteins which modulate endothelial health in a favourable manner. Umbilical cord blood derived ECFCs were incubated with different concentrations of pravastatin with or without mevalonate, a key intermediate in cholesterol synthesis. Functional capacities such as migration, proliferation and tube formation were addressed in corresponding in vitro assays. mRNA and protein levels or phosphorylation of protein kinase B (AKT), endothelial nitric oxide synthase (eNOS), heme oxygenase-1 (HO-1), vascular endothelial growth factor A (VEGF-A), placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1) and endoglin (Eng) were analyzed by real time PCR or immunoblot, respectively. Proliferation, migration and tube formation of ECFCs were enhanced after pravastatin treatment, and AKT- and eNOS-phosphorylation were augmented. Further, expression levels of HO-1, VEGF-A and PlGF were increased, whereas expression levels of sFlt-1 and Eng were decreased. Pravastatin induced effects were reversible by the addition of mevalonate. Pravastatin induces beneficial effects on ECFC function, angiogenic signaling and protein expression. These effects may contribute to understand the pleiotropic function of statins as well as to provide a promising option to improve ECFCs’ condition in cell therapy in order to ameliorate endothelial dysfunction.


2021 ◽  
Author(s):  
◽  
Zaramasina Clark

<p>The number of cycles of assisted reproductive technologies (ART) performed increased by ~9.5 % globally between 2008 and 2010. In spite of this, the success rate in terms of delivery was only ~19.0 % (Dyer et al., 2016). This discrepancy between the demand for, and success of, these technologies necessitates the development of tools to improve ART efficiency. To facilitate this, a better understanding of how the microenvironment changes within the developing follicle to culminate in a mature, developmentally-competent oocyte is required. This study employed an in vivo and in vitro ovine model to investigate the relationship between the surrounding microenvironment and oocyte maturation, and in particular, the attainment of oocyte developmental competency and high-quality embryos.  The first objective of this PhD study was to comprehensively investigate the changing microenvironment of in vivo matured, presumptive preovulatory (PPOV) follicles from wild-type (++) and high ovulation rate (OR; I+B+) ewes. The high OR ewes were heterozygous carriers of mutations in BMP15 (I+) and BMPRIB (B+). Functional differences in follicular somatic (granulosa and cumulus) cells between these genotypes, including differential gonadotropin responsiveness of granulosa cells, composition of follicular fluid and gene expression profiles in cumulus cells were evident. These differences emerged as part of a compensatory mechanism by which oocytes from smaller follicles, containing fewer granulosa cells, achieved developmental competency in I+B+ ewes.  The second objective of this PhD study was to develop new approaches for improving current in vitro maturation (IVM) strategies. The first approach utilised in this study focused on developing biomarkers that could be used to improve prediction of developmental competency in oocytes and in vitro produced embryos. This involved interrogating the hypothesis that a combination of molecular and morphokinetic biomarkers would better predict the developmental competency of oocytes and embryos compared to using these biomarkers alone. The second approach utilised in this PhD study tested the effects of modulating IVM conditions to better mimic the follicular microenvironment of a high, compared to a low, OR species on oocyte developmental competency and embryo quality. This involved supplementing IVM media with different ratios of two oocyte-secreted growth factors, i.e. GDF9:BMP15, that were representative of low or high OR species. These approaches demonstrated significant potential and warrant further investigation.  The most significant finding of this study was that despite variances in the surrounding microenvironment during in vivo and in vitro oocyte maturation that culminated in differential gene expression patterns in cumulus cells, and divergent gonadotropin-responsiveness of granulosa cells, the gene expression signatures of developmentally-competent oocytes and the morphokinetics of high-quality embryos were unaltered. This confirms the value of developing such biomarkers for oocyte development competency and embryo quality that remain unaltered despite a changing surrounding environment. Interestingly, simulating the ratio of GDF9:BMP15 that oocytes from high OR species are exposed to during maturation improved developmental competency in oocytes as demonstrated by increased blastocyst rates. Furthermore, this study has demonstrated that combinations of molecular (cumulus cell gene expression) and morphokinetic biomarkers improved the ability to predict developmental competency in oocytes and embryos. Overall, this study revealed novel information regarding the follicular microenvironment during final maturation and identified several novel approaches to improving the efficiency of ART.</p>


2021 ◽  
Author(s):  
Jozsef Bodis ◽  
Endre Sulyok ◽  
Akos Varnagy ◽  
Viktória Prémusz ◽  
Krisztina Godony ◽  
...  

Abstract BackgroundThis observational clinical study evaluated the expression levels and predictive values of some apoptosis-related genes in granulosa cells (GCs) and follicular fluid (FF) of women undergoing in vitro fertilization (IVF).Methods GCs and FF were obtained at oocyte retrieval from 31 consecutive patients with heterogeneous infertility diagnosis (age: 34.3±5.8 years, body mass index: 24.02±3.12 kg/m2, duration of infertility: 4.2±2.1 years). mRNA expression of pro-apoptotic (BAX, CASP3, CASP8) and anti-apoptotic (BCL2, AMH, AMHR, FSHR, LHR, CYP19A1) factors was determined by quantitative RT-PCR using ROCHE LightCycler 480. Results No significant difference in GC or FF mRNA expression of pro- and anti-apoptotic factors could be demonstrated between IVF patients with (9 patients) or without (22 patients) clinical pregnancy. Each transcript investigated was detected in FF, but their levels were markedly reduced and independent of those in GCs. The number of retrieved oocytes was positively associated with GC AMHR (r=0.393, p=0.029), but the day of embryo transfer was negatively associated with GC LHR (r=-0.414, p=0.020) and GC FSHR transcripts (r=-0.535, p=0.002). When pregnancy positive group was analysed separately the impact of apoptosis- related gene expressions on some selected measures of IVF success could be observed. Strong positive relationship was found between gene expression levels of pro- and anti-apoptotic factors in GCs.ConclusionOur study provides only marginal evidences for the apoptosis dependence of IVF outcome and suggests that the apoptosis process induces adaptive increases of the anti-apoptotic gene expression to attenuate apoptosis and to protect cell survival.


Sign in / Sign up

Export Citation Format

Share Document