Relative efficiency of rhizobacteria for auxin biosynthesis in rhizosphere and non-rhizosphere soils

Soil Research ◽  
2004 ◽  
Vol 42 (8) ◽  
pp. 921 ◽  
Author(s):  
Azeem Khalid ◽  
Shermeen Tahir ◽  
Muhammad Arshad ◽  
Zahir Ahmad Zahir

Biosynthesis of auxins in the rhizosphere of different crops may vary because of quantitative and qualitative variations in microbial population and root exudation. A laboratory study was conducted to assess in vitro auxin biosynthesis, and biosynthesis in rhizosphere and non-rhizosphere soils of different crops (maize, sorghum, mungbean, cotton). Soils were inoculated with selected rhizobacteria with and without the auxin precursor L-tryptophan (L-TRP). Auxins were detected by colourimetry as indole acetic acid equivalents and confirmed by high performance liquid chromatography. Results revealed that 83% of the 60 rhizobacteria were capable of producing auxins in the absence of L-TRP. Auxin biosynthesis by the 8 most efficient rhizobacteria ranged from 5.0 to 12.1 mg/L broth medium. A comparison of rhizosphere v. non-rhizosphere soils indicated a greater accumulation of auxins in the rhizosphere soils than non-rhizosphere soils. Overall, inoculation of rhizosphere soils with selected rhizobacteria resulted in greater production of auxin (up to 10.4 mg/kg soil) than in inoculated non-rhizosphere soils (up to 5.76 mg/kg). Moreover, efficiency of these rhizobacteria for auxin biosynthesis in both rhizosphere and non-rhizosphere soils differed with crop and bacterial strain. Some rhizobacterial strains exhibited superiority over the indigenous microflora for auxin biosynthesis in soil. Application of L-TRP promoted auxin biosynthesis in both rhizosphere and non-rhizosphere soils. These findings imply that inoculation with suitable strains and/or amendment with L-TRP could promote auxin synthesis in the rhizosphere soil of a given crop, which may have consequences for better plant/crop growth.

2010 ◽  
Vol 7 (3) ◽  
pp. 1113-1119
Author(s):  
Baghdad Science Journal

This study on the plant of Ain –AL Bason Catharanthus roseous showed the ability of callus cells that is produced by In Vitro culture technique and transformed to the accumulated media (MS 40gm/L sucrose ,2gm/L IAA Indole acetic acid , 0.5gm/L Tryptophan) to produce Vinblastine and Vincristine compounds. Extraction, purification and quantitive determination of Vinblastine and Vincristine compounds using High performance liquid chromatography technique (HPLC)were carried out. The results showed that the highest concentration of Vinblastine and Vincristine compounds were ( 4.653,12.5 (ppm /0.5 dry Wight respectively from transformed callus cells from MS 40 gm /L sucrose , 2 gm / L NAA Naphthaline acetic acid .


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2725 ◽  
Author(s):  
María Marhuenda-Muñoz ◽  
Emily P. Laveriano-Santos ◽  
Anna Tresserra-Rimbau ◽  
Rosa M. Lamuela-Raventós ◽  
Miriam Martínez-Huélamo ◽  
...  

The role of gut microbiota in human health has been investigated extensively in recent years. The association of dysbiosis, detrimental changes in the colonic population, with several health conditions has led to the development of pro-, pre- and symbiotic foods. If not absorbed in the small intestine or secreted in bile, polyphenols and other food components can reach the large intestine where they are susceptible to modification by the microbial population, resulting in molecules with potentially beneficial health effects. This review provides an overview of studies that have detected and/or quantified microbial phenolic metabolites using high-performance liquid chromatography as the separation technique, followed by detection through mass spectrometry. Both in vitro experimental studies and human clinical trials are covered. Although many of the microbial phenolic metabolites (MPM) reported in in vitro studies were identified in human samples, further research is needed to associate them with clinical health outcomes.


1987 ◽  
Vol 114 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Chohei Shigeno ◽  
Itsuo Yamamoto ◽  
Shegiharu Dokoh ◽  
Megumu Hino ◽  
Jun Aoki ◽  
...  

Abstract. We have partially purified a tumour factor capable of stimulating both bone resorption in vitro and cAMP accumulation in osteoblastic ROS 17/2 cells from three human tumours associated with humoral hypercalcaemia of malignancy. Purification of tumour factor by sequential acid urea extraction, gel filtration and cation-exchange chromatography, reverse-phase high performance liquid chromatography followed by analytical isoelectric focussing provided a basic protein (pI > 9.3) with a molecular weight of approximately 13 000 as a major component of the final preparation which retained both the two bioactivities. Bone resorbing activity and cAMP-increasing activity in purified factor correlated with each other. cAMP-increasing activity of the factor was heat- and acid-stable, but sensitive to alkaline ambient pH. Treatment with trypsin destroyed cAMP-increasing activity of the factor. Synthetic parathyroid hormone (PTH) antagonist, human PTH-(3– 34) completely inhibited the cAMP-increasing activity of the factor. The results suggest that this protein factor, having its effects on both osteoclastic and osteoblastic functions, may be involved in development of enhanced bone resorption in some patients with humoral hypercalcaemia of malignancy.


Author(s):  
G D Chandrethiya ◽  
P K Shelat ◽  
M N Zaveri

PEGylated gelatin nanoparticles loaded with colchicine were prepared by ethanol precipitation method. Poly-(ethylene glycol)-5000-monomethylether (MPEG 5000), a hydrophilic polymer, was used to pegylate gelatin.  Gluteraldehyde was used as cross-linking agent. To obtain a high quality product, major formulation parameters were optimized.  Spherical particles with mean particles of 193 nm were measured by a Malvern particle size analyzer. Entrapment efficiency was found to be 71.7 ± 1.4% and determined with reverse phase high performance liquid charomatography (RP-HPLC). The in vitro drug release study was performed by dialysis bag method for a period of 168 hours. Lyophilizaton study showed sucrose at lower concentrations proved the best cryoprotectant for this formulation.  Stability study revealed that lyophilized nanoparticles were equally effective (p < 0.05) after one year of storage at 2-8°C with ambient humidity. In vitro antitumoral activity was accessed using the MCF-7 cell line by MTT assay.  The IC50 value was found to be 0.034 μg/ml for the prepared formulation. The results indicate that PEGylated gelatin nanoparticles could be utilized as a potential drug delivery for targeted drug delivery of tumors.  


Author(s):  
Kavitha K ◽  
Asha S ◽  
Hima Bindu T.V.L ◽  
Vidyavathi M

The safety and efficacy of a drug is based on its metabolism or metabolite formed. The metabolism of drugs can be studied by different in vitro models, among which microbial model became popular. In the present study, eight microbes were screened for their ability to metabolize phenobarbital in a manner comparable to humans with a model to develop alternative systems to study human drug metabolism. Among the different microbes screened, a filamentous fungi Rhizopus stolonifer metabolized phenobarbital to its metabolite which is used for further pharmacological and toxicological studies. The transformation of phenobarbital was identified by high- performance liquid chromatography (HPLC). Interestingly, Rhizopus stolonifer sample showed an extra metabolite peak at 3.11min. compared to its controls. The influence of different carbon sources in media used for growth of fungus, on metabolite production was studied, to find its effect in production of metabolite as the carbon source may influence the growth of the cell.


2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1130
Author(s):  
Mariana Pires Figueiredo ◽  
Ana Borrego-Sánchez ◽  
Fátima García-Villén ◽  
Dalila Miele ◽  
Silvia Rossi ◽  
...  

This work presents the development of multifunctional therapeutic membranes based on a high-performance block copolymer scaffold formed by polyether (PE) and polyamide (PA) units (known as PEBA) and layered double hydroxide (LDH) biomaterials, with the aim to study their uses as wound dressings. Two LDH layer compositions were employed containing Mg2+ or Zn2+, Fe3+ and Al3+ cations, intercalated with chloride anions, abbreviated as Mg-Cl or Zn-Cl, or intercalated with naproxenate (NAP) anions, abbreviated as Mg-NAP or Zn-NAP. Membranes were structurally and physically characterized, and the in vitro drug release kinetics and cytotoxicity assessed. PEBA-loading NaNAP salt particles were also prepared for comparison. Intercalated NAP anions improved LDH–polymer interaction, resulting in membranes with greater mechanical performance compared to the polymer only or to the membranes containing the Cl-LDHs. Drug release (in saline solution) was sustained for at least 8 h for all samples and release kinetics could be modulated: a slower, an intermediate and a faster NAP release were observed from membranes containing Zn-NAP, NaNAP and Mg-NAP particles, respectively. In general, cell viability was higher in the presence of Mg-LDH and the membranes presented improved performance in comparison with the powdered samples. PEBA containing Mg-NAP sample stood out among all membranes in all the evaluated aspects, thus being considered a great candidate for application as multifunctional therapeutic dressings.


Soil Systems ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 26
Author(s):  
Rihab Djebaili ◽  
Marika Pellegrini ◽  
Massimiliano Rossi ◽  
Cinzia Forni ◽  
Maria Smati ◽  
...  

This study aimed to characterize the halotolerant capability, in vitro, of selected actinomycetes strains and to evaluate their competence in promoting halo stress tolerance in durum wheat in a greenhouse experiment. Fourteen isolates were tested for phosphate solubilization, indole acetic acid, hydrocyanic acid, and ammonia production under different salt concentrations (i.e., 0, 0.25, 0.5, 0.75, 1, 1.25, and 1.5 M NaCl). The presence of 1-aminocyclopropane-1-carboxylate deaminase activity was also investigated. Salinity tolerance was evaluated in durum wheat through plant growth and development parameters: shoot and root length, dry and ash-free dry weight, and the total chlorophyll content, as well as proline accumulation. In vitro assays have shown that the strains can solubilize inorganic phosphate and produce indole acetic acid, hydrocyanic acid, and ammonia under different salt concentrations. Most of the strains (86%) had 1-aminocyclopropane-1-carboxylate deaminase activity, with significant amounts of α-ketobutyric acid. In the greenhouse experiment, inoculation with actinomycetes strains improved the morpho-biochemical parameters of durum wheat plants, which also recorded significantly higher content of chlorophylls and proline than those uninoculated, both under normal and stressed conditions. Our results suggest that inoculation of halotolerant actinomycetes can mitigate the negative effects of salt stress and allow normal growth and development of durum wheat plants.


Sign in / Sign up

Export Citation Format

Share Document