Microbial community and ecotoxicity analysis of bioremediated, weathered hydrocarbon-contaminated soil

Soil Research ◽  
2011 ◽  
Vol 49 (3) ◽  
pp. 261 ◽  
Author(s):  
Petra J. Sheppard ◽  
Eric M. Adetutu ◽  
Tanvi H. Makadia ◽  
Andrew S. Ball

Bioremediated soils are usually disposed of after meeting legislated guidelines defined by chemical and ecotoxicity tests. In many countries including Australia, ecotoxicity tests are not yet mandatory safety requirements. This study investigated the biotreatment of weathered hydrocarbon-contaminated soils in 12-week laboratory-based microcosms. Monitored natural attenuation resulted in ~43% reduction of total petroleum hydrocarbon contaminant to 5503 mg/kg (C16–C35), making the soil suitable for disposal as waste under current guidelines (pesticide and metal contents within safe limits). 16S rDNA (universal and AlkB) and ITS-based DGGE fingerprints showed stable and adapted microbial communities throughout the experimental period. However, ecotoxicology assays showed 100% mortality of earthworms (Eisena fetida) in potting soils containing ≥50% (≥2751 mg/kg, legally safe in situ concentrations) contaminated soil over 14 days. Up to 70% reduction in radish (Raphanus sativus) seed germination was observed in potting soils containing ≥10% contaminated soil (≥550 mg/kg, legally safe ex situ concentrations for soil disposal into residential areas). The results indicate the toxicity of these soils to soil biota despite meeting legislated Australian safe levels and guidelines for disposal or use in residential areas.

2020 ◽  
Vol 166 ◽  
pp. 01007
Author(s):  
Vasyl Savosko ◽  
Aleksandr Podolyak ◽  
Irina Komarova ◽  
Aleksey Karpenko

Object of research: to systematize (taking into account the possible consequences to biosphere) the known technologies for ecological restoration of soils contaminated by heavy metals and radionuclides. Only a healing technology should be recognized as one possible methodology for solving any soil problems. For soils contaminated by heavy metals and radionuclides healing patterns is conceptually ordered into the following levels: mission, strategy, technology. The mission of healthy soil should be aimed at maintaining the chemical elements content within the optimum interval. The strategy of healthy soil involves the regulation of individual elements content in the soil. Ex-situ a soil healing technology is implemented outside the original pollution site. In-situ, a soil healing technology is carried out directly on the original pollution site. Excavation of the contaminated soil layer is the first stage for ex-situ soil restoration. In the future it will be possible: 1) storage of contaminated soil at special landfills, 2) treatment of contaminated soil at a special reactor. All technologies for in-situ healthy of heavy metals contaminated soils can be ordered as: 1) localization, 2) deconcentration, 3) inactivation, 4) extraction.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4664
Author(s):  
Israel Gonçalves Sales da Silva ◽  
Fabíola Carolina Gomes de Almeida ◽  
Nathália Maria Padilha da Rocha e Silva ◽  
Alessandro Alberto Casazza ◽  
Attilio Converti ◽  
...  

Petroleum hydrocarbons, heavy metals and agricultural pesticides have mutagenic, carcinogenic, immunotoxic and teratogenic effects and cause drastic changes in soil physicochemical and microbiological characteristics, thereby representing a serious danger to health and environment. Therefore, soil pollution urgently requires the application of a series of physicochemical and biological techniques and treatments to minimize the extent of damage. Among them, bioremediation has been shown to be an alternative that can offer an economically viable way to restore polluted areas. Due to the difficulty in choosing the best bioremediation technique for each type of pollutant and the paucity of literature on soil bioremediation enhanced by the use of specific additives, we reviewed the main in situ and ex situ methods, their current properties and applications. The first section discusses the characteristics of each class of pollutants in detail, while the second section presents current bioremediation technologies and their main uses, followed by a comparative analysis showing their respective advantages and disadvantages. Finally, we address the application of surfactants and biosurfactants as well as the main trends in the bioremediation of contaminated soils.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4309 ◽  
Author(s):  
Maiara Barbosa Ferreira ◽  
Aline Maria Sales Solano ◽  
Elisama Vieira dos Santos ◽  
Carlos A. Martínez-Huitle ◽  
Soliu O. Ganiyu

In recent years, due to industrial modernization and agricultural mechanization, several environmental consequences have been observed, which make sustainable development difficult. Soil, as an important component of ecosystem and a key resource for the survival of human and animals, has been under constant contamination from different human activities. Contaminated soils and sites require remediation not only because of the hazardous threat it possess to the environment but also due to the shortage of fresh land for both agriculture and urbanization. Combined or coupled remediation technologies are one of the efficient processes for the treatment of contaminated soils. In these technologies, two or more soil remediation techniques are applied simultaneously or sequentially, in which one technique complements the other, making the treatment very efficient. Coupling anodic oxidation (AO) and soil remediation for the treatment of soil contaminated with organics has been studied via two configurations: (i) soil remediation, ex situ AO, where AO is used as a post-treatment stage for the treatment of effluents from soil remediation process and (ii) soil remediation, in situ AO, where both processes are applied simultaneously. The former is the most widely investigated configuration of the combined processes, while the latter is less common due to the greater diffusion dependency of AO as an electrode process. In this review, the concept of soil washing (SW)/soil flushing (SF) and electrokinetic as soil remediation techniques are briefly explained followed by a discussion of different configurations of combined AO and soil remediation.


2021 ◽  
Vol 2 (4) ◽  
pp. 53-58
Author(s):  
Hasnain Raza ◽  

As anthropogenic activities rise over the world, representing an environmental threat, soil contamination and treatment of polluted areas have become a worldwide concern. Bioremediation is a sustainable technique that could be a cost-effective mitigating solution for heavy metal-polluted soil regeneration. Due to the difficulties in determining the optimum bioremediation methodology for each type of pollutant and the lack of literature on soil bioremediation, we reviewed the main in-situ type, their current properties, applications, and techniques, plants, and microbe’s efficiency for treatment of contaminated soil. In this review, we describe the deeper knowledge of the in-situ types of bioremediation and their different pollutant accumulation mechanisms.


2019 ◽  
pp. 101-108
Author(s):  
Lilija Kalediene ◽  
Grazina Giedraityte ◽  
Rapolas Liuzinas

The present study was undertaken to evaluate the efficacy of introduced indigenousbacterial isolates for ex situ bioremediation of fuel oil contaminated soil. For this purposethree hydrocarbon-degrading indigenous bacterial isolates were screened from petroleumoil contaminated soil and repeatedly used for inoculation of fuel oil contaminated soil.The total petroleum hydrocarbons (TPH) content was determined by gravimetric method,Hydrocarbon fractions (alkanes, aromatics, asphaltenes and resins) present in TPH wereobtained by silica gel column chromatography. The study showed that some introducedbacterial isolates effectively adapted to the contaminated soil. The bioaugmentation effectwas calculated to raise the numbers of bacteria by approximately one order of magnitudefrom the indigenous population at the site. Ex situ study showed that the introducedbacterial consortium effectively adapted to the local environment of the soil at thebioremediation site.Our results indicated that disappearance of TPH from inoculated soil samples dependedon the general soil impurity, term of bacterial treatment, level of TPH contamination andindividual microorganism efficacy. With application of bacterial consortium andfertilizers, the TPH level was reduced to 60 - 66% after three months.


2018 ◽  
Vol 14 (3) ◽  
pp. 48-56
Author(s):  
Noor Mohsen Jabbar ◽  
Estabriq Hasan Kadhim ◽  
Alaa Kareem Mohammed

This study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. The capability of mixed bacterial culture was examined to remediate the diesel-contaminated soil in bio piling system. For fast ex-situ treatment of diesel-contaminated soils, the bio pile system was selected. Two pilot scale bio piles (25 kg soil each) were constructed containing soils contaminated with approximately 2140 mg/kg total petroleum hydrocarbons (TPHs). The amended soil: (contaminated soil with the addition of nutrients and bacterial inoculum), where the soil was mixed with 1.5% of sawdust, then supplied with the necessary nutrients and watered daily to provide conditions promoting microorganism growth. Unamended soil was prepared as a control (contaminated soil without addition).  Both systems were equipped with oxygen to provide aerobic conditions, incubated at atmospheric temperature and weekly sampling within 35 days. Overall 75% of the total petroleum hydrocarbons were removed from the amended soil and 38 % of the control soil at the end of study period. The study concluded that ex-situ experiment (Bio pile) is a preferable, economical, and environmentally friendly procedure, thus representing a good option for the treatment of soil contaminated with diesel.


2017 ◽  
pp. 90
Author(s):  
Marcia Marques ◽  
Jorge Antonio Lopes ◽  
Marcelo Alarsa ◽  
Marcos F. Ferrari ◽  
Graciane Silva ◽  
...  

Remediation of soils contaminated with petroleum and its products became a major issue in all regions of the world where on-shore and off-shore exploitation, refining transportation and storage of these products are carried out intensively. Many techniques for remediation of contaminated areas have been developed and tested during decades, being bioremediation both in-situ and ex-situ tow of the available options that require further development, which are currently capturing the attention of different sectors involved with the problem in Brazil. This paper presents the historical perspective of the increasing problem that initially appeared in the most traditional industrialized countries and currently has been intensified in countries with growing economy and technological development such as Brazil. Technological options for remediating the areas, variables relevant to the cleaning process, as well as the most recent trends in Brazil regarding the use of different techniques, with focus on biopiles are briefly presented.


2019 ◽  
Vol 7 (5) ◽  
pp. 13-22 ◽  
Author(s):  
Hilary Uguru ◽  
Akpokodje, O. I.

This study was carried out to investigate the effect of compost manure and organic soap on hydrocarbon degradation in petroleum products contaminated soil. 10 kg of top soil collected at a depth of 0-20 cm, air dried and sieved, were poured into plastic containers. The soil samples were was pounded with 1 L of spent engine oil, 1 L of kerosene, 1 L of petrol and 1 L of diesel daily for five days. The containers were placed under natural environmental conditions for three weeks to enable full acclimatization of the petroleum products with the soil. A completely randomized design comprising T1 (Polluted soil without treatment ‘control’); T2 (10 kg contaminated soil + 500 g organic soap); T3 (10 kg contaminated soil + 500 g compost manure); and T4 (10 kg contaminated soil + 500 g compost manure + 500 g organic soap) was used for this study. Some physical characteristics (soil porosity and specific gravity) and Total Hydrocarbon Content (THC) of the soil samples were tested for, after the full acclimatization of the soil samples, and at the end of the 10 week experimental period, in accordance with standard methods. Results of the study showed that addition of the compost manure and organic soap the contaminated soil samples significantly (p ≤0.05) degraded the THC, and improved the soil physical characteristics. The result showed that the combination of compost manure and organic soap gave the best remediation result (from 957.21 mg/kg to 154.36 mg/kg), followed by organic soap (from 957.21mg/kg to 203.61 mg/kg), and then compost manure (from 957.21 mg/kg to 262.03 mg/kg). At the end of the experimental period, vegetative growth was observed in the treated soil samples; whereas,  in the control soil samples vegetative growth was absent. Results obtained from this study have shown that amending petroleum products contaminated soils with compost manure and organic soap will enhance remediation of petroleum products contaminated sites.


2013 ◽  
Vol 1 (1) ◽  
pp. 21-28
Author(s):  
Basel Natsheh ◽  
Nawaf Abu-Khalaf ◽  
Tahseen Sayara ◽  
Saed Khayat ◽  
Mazen Salman

Plant-assisted bioremediation (phytoremediation) is a promising technique for in-situ remediation of contaminated soils. Enhancement of phytoremediation processes requires a sound understanding of the complex interactions in the rhizosphere. This work presents a Pot experiment was conducted under green house conditions to test the effect of fungal inoculation on remediating heavy metal (HM) contaminated soil treated with sewage effluent for several years. Canola crop was used as accumulator plants. Results demonstrated that the dry matter yield of tested crops were significantly higher in soil irrigated for 50 years with sewage effluent than that in 20 years sewage effluent irrigated soil. Metal uptake and accumulation in different plant parts (shoot and root) was enhanced after inoculation with Aspergillus parasiticus (F1) and Fusarium oxysporum (F2). The reate of HM accumulation as higher in in soil treated irrigated sewage effluent for 50 years than that in 20 years sewage irrigated soil.


Sign in / Sign up

Export Citation Format

Share Document