scholarly journals Soil Bioremediation: Overview of Technologies and Trends

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4664
Author(s):  
Israel Gonçalves Sales da Silva ◽  
Fabíola Carolina Gomes de Almeida ◽  
Nathália Maria Padilha da Rocha e Silva ◽  
Alessandro Alberto Casazza ◽  
Attilio Converti ◽  
...  

Petroleum hydrocarbons, heavy metals and agricultural pesticides have mutagenic, carcinogenic, immunotoxic and teratogenic effects and cause drastic changes in soil physicochemical and microbiological characteristics, thereby representing a serious danger to health and environment. Therefore, soil pollution urgently requires the application of a series of physicochemical and biological techniques and treatments to minimize the extent of damage. Among them, bioremediation has been shown to be an alternative that can offer an economically viable way to restore polluted areas. Due to the difficulty in choosing the best bioremediation technique for each type of pollutant and the paucity of literature on soil bioremediation enhanced by the use of specific additives, we reviewed the main in situ and ex situ methods, their current properties and applications. The first section discusses the characteristics of each class of pollutants in detail, while the second section presents current bioremediation technologies and their main uses, followed by a comparative analysis showing their respective advantages and disadvantages. Finally, we address the application of surfactants and biosurfactants as well as the main trends in the bioremediation of contaminated soils.

2009 ◽  
Vol 52 (4) ◽  
pp. 1043-1055 ◽  
Author(s):  
Adriano Pinto Mariano ◽  
Sérgio Henrique Rezende Crivelaro ◽  
Dejanira de Franceschi de Angelis ◽  
Daniel Marcos Bonotto

This work investigated the possibility of using vinasse as an amendment in ex-situ bioremediation processes. Groundwater and soil samples were collected at petrol stations. The soil bioremediation was simulated in Bartha biometer flasks, used to measure the microbial CO2 production, during 48 days, where vinasse was added at a concentration of 33 mL.Kg-1of soil. Biodegradation efficiency was also measured by quantifying the total petroleum hydrocarbons (TPH) by gas chromatography. The groundwater bioremediation was carried out in laboratory experiments simulating aerated (bioreactors) and not aerated (BOD flasks) conditions. In both the cases, the concentration of vinasse was 5 % (v/v) and different physicochemical parameters were evaluated during 20 days. Although an increase in the soil fertility and microbial population were obtained with the vinasse, it demonstrated not to be adequate to enhance the bioremediation efficiency of diesel oil contaminated soils. The addition of the vinasse in the contaminated groundwaters had negative effects on the biodegradation of the hydrocarbons, since vinasse, as a labile carbon source, was preferentially consumed.


2020 ◽  
Author(s):  
Stefano Mammola ◽  
Enrico Lunghi ◽  
Helena Bilandžija ◽  
Pedro Cardoso ◽  
Volker Grimm ◽  
...  

(1) Caves and other subterranean habitats fulfill the requirements of experimental model systems to address general questions in ecology and evolution. Yet, the harsh working conditions of these environments and the uniqueness of the subterranean organisms have challenged most attempts to pursuit standardized research(2) Two main obstacles have synergistically hampered previous attempts. First, there is a habitat impediment related to the objective difficulties of exploring subterranean habitats and our inability to access the network of fissures that represent the elective habitat for the so-called “cave species.” Second, there is a biological impediment illustrated by the rarity of most subterranean species and their low physiological tolerance, often limiting sample size and complicating lab experiments.(3) We explore the advantages and disadvantages of four general experimental setups (in-situ, quasi in-situ, ex-situ, and in-silico) in the light of habitat and biological impediments. We also discuss the potential of indirect approaches to research. Furthermore, using bibliometric data, we provide a quantitative overview of the model organisms that scientists have exploited in the study of subterranean life.(4) Our over-arching goal is to promote caves as model systems where one can perform standardised scientific research. This is important not only to achieve an in-depth understanding of the functioning of subterranean ecosystems but also to fully exploit their long-discussed potential in addressing general scientific questions with implications beyond the boundaries of this discipline.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4309 ◽  
Author(s):  
Maiara Barbosa Ferreira ◽  
Aline Maria Sales Solano ◽  
Elisama Vieira dos Santos ◽  
Carlos A. Martínez-Huitle ◽  
Soliu O. Ganiyu

In recent years, due to industrial modernization and agricultural mechanization, several environmental consequences have been observed, which make sustainable development difficult. Soil, as an important component of ecosystem and a key resource for the survival of human and animals, has been under constant contamination from different human activities. Contaminated soils and sites require remediation not only because of the hazardous threat it possess to the environment but also due to the shortage of fresh land for both agriculture and urbanization. Combined or coupled remediation technologies are one of the efficient processes for the treatment of contaminated soils. In these technologies, two or more soil remediation techniques are applied simultaneously or sequentially, in which one technique complements the other, making the treatment very efficient. Coupling anodic oxidation (AO) and soil remediation for the treatment of soil contaminated with organics has been studied via two configurations: (i) soil remediation, ex situ AO, where AO is used as a post-treatment stage for the treatment of effluents from soil remediation process and (ii) soil remediation, in situ AO, where both processes are applied simultaneously. The former is the most widely investigated configuration of the combined processes, while the latter is less common due to the greater diffusion dependency of AO as an electrode process. In this review, the concept of soil washing (SW)/soil flushing (SF) and electrokinetic as soil remediation techniques are briefly explained followed by a discussion of different configurations of combined AO and soil remediation.


2007 ◽  
Vol 15 (6) ◽  
pp. 38-39
Author(s):  
D. J. MacMahon ◽  
E. Raz-Moyal

Semiconductor manufacturers are increasingly turning to Transmission Electron Microscopes (TEMs) to monitor product yield and process control, analyze defects, and investigate interface layer morphology. To prepare TEM specimens, Focused Ion Beam (FIB) technology is an invaluable tool, yielding a standard milled TEM lamella approximately 15 μm wide, 5 μm deep and ~100 nm thick. Several techniques have been developed to extract these tiny objects from a large wafer and view it in the TEM. These techniques, including ex-situ lift-out, H-bar, and in-situ lift-out, have different advantages and disadvantages, but all require painstaking preparation of one specimen at a time.


2021 ◽  
Vol 2 (4) ◽  
pp. 53-58
Author(s):  
Hasnain Raza ◽  

As anthropogenic activities rise over the world, representing an environmental threat, soil contamination and treatment of polluted areas have become a worldwide concern. Bioremediation is a sustainable technique that could be a cost-effective mitigating solution for heavy metal-polluted soil regeneration. Due to the difficulties in determining the optimum bioremediation methodology for each type of pollutant and the lack of literature on soil bioremediation, we reviewed the main in-situ type, their current properties, applications, and techniques, plants, and microbe’s efficiency for treatment of contaminated soil. In this review, we describe the deeper knowledge of the in-situ types of bioremediation and their different pollutant accumulation mechanisms.


2018 ◽  
Vol 14 (3) ◽  
pp. 48-56
Author(s):  
Noor Mohsen Jabbar ◽  
Estabriq Hasan Kadhim ◽  
Alaa Kareem Mohammed

This study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. The capability of mixed bacterial culture was examined to remediate the diesel-contaminated soil in bio piling system. For fast ex-situ treatment of diesel-contaminated soils, the bio pile system was selected. Two pilot scale bio piles (25 kg soil each) were constructed containing soils contaminated with approximately 2140 mg/kg total petroleum hydrocarbons (TPHs). The amended soil: (contaminated soil with the addition of nutrients and bacterial inoculum), where the soil was mixed with 1.5% of sawdust, then supplied with the necessary nutrients and watered daily to provide conditions promoting microorganism growth. Unamended soil was prepared as a control (contaminated soil without addition).  Both systems were equipped with oxygen to provide aerobic conditions, incubated at atmospheric temperature and weekly sampling within 35 days. Overall 75% of the total petroleum hydrocarbons were removed from the amended soil and 38 % of the control soil at the end of study period. The study concluded that ex-situ experiment (Bio pile) is a preferable, economical, and environmentally friendly procedure, thus representing a good option for the treatment of soil contaminated with diesel.


2017 ◽  
pp. 90
Author(s):  
Marcia Marques ◽  
Jorge Antonio Lopes ◽  
Marcelo Alarsa ◽  
Marcos F. Ferrari ◽  
Graciane Silva ◽  
...  

Remediation of soils contaminated with petroleum and its products became a major issue in all regions of the world where on-shore and off-shore exploitation, refining transportation and storage of these products are carried out intensively. Many techniques for remediation of contaminated areas have been developed and tested during decades, being bioremediation both in-situ and ex-situ tow of the available options that require further development, which are currently capturing the attention of different sectors involved with the problem in Brazil. This paper presents the historical perspective of the increasing problem that initially appeared in the most traditional industrialized countries and currently has been intensified in countries with growing economy and technological development such as Brazil. Technological options for remediating the areas, variables relevant to the cleaning process, as well as the most recent trends in Brazil regarding the use of different techniques, with focus on biopiles are briefly presented.


2020 ◽  
Vol 166 ◽  
pp. 01007
Author(s):  
Vasyl Savosko ◽  
Aleksandr Podolyak ◽  
Irina Komarova ◽  
Aleksey Karpenko

Object of research: to systematize (taking into account the possible consequences to biosphere) the known technologies for ecological restoration of soils contaminated by heavy metals and radionuclides. Only a healing technology should be recognized as one possible methodology for solving any soil problems. For soils contaminated by heavy metals and radionuclides healing patterns is conceptually ordered into the following levels: mission, strategy, technology. The mission of healthy soil should be aimed at maintaining the chemical elements content within the optimum interval. The strategy of healthy soil involves the regulation of individual elements content in the soil. Ex-situ a soil healing technology is implemented outside the original pollution site. In-situ, a soil healing technology is carried out directly on the original pollution site. Excavation of the contaminated soil layer is the first stage for ex-situ soil restoration. In the future it will be possible: 1) storage of contaminated soil at special landfills, 2) treatment of contaminated soil at a special reactor. All technologies for in-situ healthy of heavy metals contaminated soils can be ordered as: 1) localization, 2) deconcentration, 3) inactivation, 4) extraction.


2021 ◽  
Vol 13 (15) ◽  
pp. 8165
Author(s):  
Valer Micle ◽  
Ioana Monica Sur

The soil samples were taken from the site of a former oil products depot from an industrial area (Romania). The soil samples taken were analyzed from a physical and chemical point of view: texture, pH, soil micronutrient content, metals concentration and petroleum hydrocarbon concentration (PHCs). The soil contaminated with total petroleum hydrocarbon (TPH (4280 mg kg−1) was disposed in the form of a pile (L × W × H: 3000 × 1400 × 500 mm). Experiments on a pilot-scale were conducted over 12 weeks at constant pH (7.5–8), temperature (22–32 °C), nutrient contents C/N/P ratio 100/10/1, soil aeration time (8 h/day) and moisture (30%). Samples were taken every two weeks for the monitoring of the TPH and the microorganisms content. During the experiment, microorganisms were added (Pseudomonas and Bacillus) every two weeks. Results of the analyses regarding the concentration of PHCs were revealed a linear decrease of the concentration of PHCs after only two weeks of treatment. This decrease in concentration was also achieved in the following weeks. Following the analysis performed on the model at the pilot scale regarding the depollution process, it can be concluded that a soil contaminated with petroleum hydrocarbons can be efficiently depolluted by performing an aeration of 8 h/day, adding microorganisms Pseudomonas and Bacillus to ensure the conditions for increasing in the total number of germs (colony forming units–CFU) from 151 × 105 to 213 × 107 CFU g−1 soil, after 12 weeks of soil treatment—the depollution efficiency achieved is 83%.


Sign in / Sign up

Export Citation Format

Share Document