scholarly journals B7-H1 shapes T-cell–mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity

2016 ◽  
Vol 113 (41) ◽  
pp. E6182-E6191 ◽  
Author(s):  
Luisa Klotz ◽  
Ivan Kuzmanov ◽  
Stephanie Hucke ◽  
Catharina C. Gross ◽  
Vilmos Posevitz ◽  
...  

Molecular mechanisms that determine lesion localization or phenotype variation in multiple sclerosis are mostly unidentified. Although transmigration of activated encephalitogenic T cells across the blood–brain barrier (BBB) is a crucial step in the disease pathogenesis of CNS autoimmunity, the consequences on brain endothelial barrier integrity upon interaction with such T cells and subsequent lesion formation and distribution are largely unknown. We made use of a transgenic spontaneous mouse model of CNS autoimmunity characterized by inflammatory demyelinating lesions confined to optic nerves and spinal cord (OSE mice). Genetic ablation of a single immune-regulatory molecule in this model [i.e., B7-homolog 1 (B7-H1, PD-L1)] not only significantly increased incidence of spontaneous CNS autoimmunity and aggravated disease course, especially in the later stages of disease, but also importantly resulted in encephalitogenic T-cell infiltration and lesion formation in normally unaffected brain regions, such as the cerebrum and cerebellum. Interestingly, B7-H1 ablation on myelin oligodendrocyte glycoprotein-specific CD4+ T cells, but not on antigen-presenting cells, amplified T-cell effector functions, such as IFN-γ and granzyme B production. Therefore, these T cells were rendered more capable of eliciting cell contact-dependent brain endothelial cell dysfunction and increased barrier permeability in an in vitro model of the BBB. Our findings suggest that a single immune-regulatory molecule on T cells can be ultimately responsible for localized BBB breakdown, and thus substantial changes in lesion topography in the context of CNS autoimmunity.

2008 ◽  
Vol 294 (6) ◽  
pp. H2619-H2626 ◽  
Author(s):  
Ryan M. Wolfort ◽  
Karen Y. Stokes ◽  
D. Neil Granger

Although hypercholesterolemia is known to impair endothelium-dependent vasodilation (EDV) long before the appearance of atherosclerotic plaques, it remains unclear whether the immune mechanisms that have been implicated in atherogenesis also contribute to the early oxidative stress and endothelial cell dysfunction elicited by hypercholesterolemia. EDV (wire myography), superoxide generation (cytochrome c reduction), and NAD(P)H oxidase mRNA expression were monitored in aortic rings from wild-type (WT) and mutant mice placed on either a normal diet or a cholesterol-enriched diet (HC) for 2 wk. WT mice on HC exhibited impaired EDV, enhanced superoxide generation, and increased expression of NAD(P)H oxidase subunit Nox-2 mRNA. The impaired EDV and increased superoxide generation induced by HC were significantly blunted in severe combined immunodeficient (SCID) mice and CD4+ T lymphocyte-deficient mice. These responses were also attenuated in HC mice genetically deficient in IFN-γ; however, adoptive transfer of WT-HC CD4+ T lymphocytes to IFN-γ-deficient recipients restored HC-induced responses. The HC-induced impaired EDV and oxidative stress were also attenuated in HC mice genetically deficient in Nox-2 (gp91 phox−/−) and in WT→gp91 phox−/−-HC chimeras. HC-induced gp91 phox mRNA expression was significantly blunted in mice deficient in CD4+ T cells or IFN-γ and was restored with adoptive transfer of WT-HC CD4+ T cells to IFN-γ-deficient recipients. These findings implicate the immune system in the early endothelial cell dysfunction associated with hypercholesterolemia and are consistent with a mechanism of impaired EDV that is mediated by CD4+ T cells and IFN-γ, acting through the generation of superoxide from vascular NAD(P)H oxidase.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicolas Page ◽  
Sylvain Lemeille ◽  
Ilena Vincenti ◽  
Bogna Klimek ◽  
Alexandre Mariotte ◽  
...  

AbstractSelf-reactive CD8+ T cells are important mediators of progressive tissue damage in autoimmune diseases, but the molecular program underlying these cells’ functional adaptation is unclear. Here we characterize the transcriptional and epigenetic landscape of self-reactive CD8+ T cells in a mouse model of protracted central nervous system (CNS) autoimmunity and compare it to populations of CNS-resident memory CD8+ T cells emerging from acute viral infection. We find that autoimmune CD8+ T cells persisting at sites of self-antigen exhibit characteristic transcriptional regulation together with distinct epigenetic remodeling. This self-reactive CD8+ T cell fate depends on the transcriptional regulation by the DNA-binding HMG-box protein TOX which remodels more than 400 genomic regions including loci such as Tcf7, which is central to stemness of CD8+ T cells. Continuous exposure to CNS self-antigen sustains TOX levels in self-reactive CD8+ T cells, whereas genetic ablation of TOX in CD8+ T cells results in shortened persistence of self-reactive CD8+ T cells in the inflamed CNS. Our study establishes and characterizes the genetic differentiation program enabling chronic T cell-driven immunopathology in CNS autoimmunity.


2021 ◽  
Vol 7 (18) ◽  
pp. eabd2710
Author(s):  
Chen Zhu ◽  
Karen O. Dixon ◽  
Kathleen Newcomer ◽  
Guangxiang Gu ◽  
Sheng Xiao ◽  
...  

T cell exhaustion has been associated with poor prognosis in persistent viral infection and cancer. Conversely, in the context of autoimmunity, T cell exhaustion has been favorably correlated with long-term clinical outcome. Understanding the development of exhaustion in autoimmune settings may provide underlying principles that can be exploited to quell autoreactive T cells. Here, we demonstrate that the adaptor molecule Bat3 acts as a molecular checkpoint of T cell exhaustion, with deficiency of Bat3 promoting a profound exhaustion phenotype, suppressing autoreactive T cell–mediated neuroinflammation. Mechanistically, Bat3 acts as a critical mTORC2 inhibitor to suppress Akt function. As a result, Bat3 deficiency leads to increased Akt activity and FoxO1 phosphorylation, indirectly promoting Prdm1 expression. Transcriptional analysis of Bat3−/− T cells revealed up-regulation of dysfunction-associated genes, concomitant with down-regulation of genes associated with T cell effector function, suggesting that absence of Bat3 can trigger T cell dysfunction even under highly proinflammatory autoimmune conditions.


2017 ◽  
Vol 232 (1) ◽  
pp. R27-R44 ◽  
Author(s):  
D S Boeldt ◽  
I M Bird

Maternal vascular adaptation to pregnancy is critically important to expand the capacity for blood flow through the uteroplacental unit to meet the needs of the developing fetus. Failure of the maternal vasculature to properly adapt can result in hypertensive disorders of pregnancy such as preeclampsia (PE). Herein, we review the endocrinology of maternal adaptation to pregnancy and contrast this with that of PE. Our focus is specifically on those hormones that directly influence endothelial cell function and dysfunction, as endothelial cell dysfunction is a hallmark of PE. A variety of growth factors and cytokines are present in normal vascular adaptation to pregnancy. However, they have also been shown to be circulating at abnormal levels in PE pregnancies. Many of these factors promote endothelial dysfunction when present at abnormal levels by acutely inhibiting key Ca2+ signaling events and chronically promoting the breakdown of endothelial cell–cell contacts. Increasingly, our understanding of how the contributions of the placenta, immune cells, and the endothelium itself promote the endocrine milieu of PE is becoming clearer. We then describe in detail how the complex endocrine environment of PE affects endothelial cell function, why this has contributed to the difficulty in fully understanding and treating this disorder, and how a focus on signaling convergence points of many hormones may be a more successful treatment strategy.


1995 ◽  
Vol 117 (2) ◽  
pp. 179-188 ◽  
Author(s):  
Michal Toborek ◽  
Steven W. Barger ◽  
Mark P. Mattson ◽  
Craig J. McClain ◽  
Bernhard Hennig

2021 ◽  
Author(s):  
qi shao ◽  
Lei Wang ◽  
maoling yuan ◽  
Xiaohong Jin ◽  
changping wu

Abstract Background: T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) is an immunosuppressive receptor expressed on the surface of immune cells, suppressing immune responses by activating the intracellular negative regulatory signals. TIGIT plays an important role in the pathogenesis of various tumors, but its immune escape in colorectal cancer remains unclear.Methods: In this study, TIGIT expression in the peripheral blood and tissue microarrays was detected flow cytometry and immunofluorescence and its relationship with prognosis was evaluated. The proliferation and cytokines of TIGIT+ T cells were measured. Glucose metabolism and key enzymes were detected by qPCR or western blot. After establishing the co-cultured system and xenotransplant models, TIGIT antibody alone or combined with PD-1 antibody was blocked to observe the tumor growth.Results: We found that the proportion of CD3+TIGIT+ T cells was increased in peripheral blood and cancer tissue in colorectal cancer patients when compared with the healthy donors. These cells exhibited functional defects, low proliferative activity, impaired cytokine production and reduced glucose metabolism. A strong association was also observed between the elevated TIGIT expression and poor prognosis. In the in vitro co-culture assays of T cells and tumor cells, the suppressed glucose metabolic activity of T cells was reversed by TIGIT blockade. In addition, this blockade induced the apoptosis and reduced G2/M transit in tumor cells. The antitumor efficacy of TIGIT Ab therapy was further demonstrated in a human colorectal xenograft mice model while co-blockers of TIGIT and PD-1 exhibited synergistic suppressing effects on tumor growth.Conclusions: It is suggest that while TIGIT induces CD3+ T cell dysfunction in colorectal cancer, co-targeting TIGIT and PD-1 can lead to an effective antitumor response and may serve as a novel therapeutic strategy for colorectal patients.


Sign in / Sign up

Export Citation Format

Share Document