scholarly journals 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells

2016 ◽  
Vol 113 (36) ◽  
pp. E5271-E5280 ◽  
Author(s):  
Matthias R. Bauer ◽  
Andreas C. Joerger ◽  
Alan R. Fersht

The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53’s oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1MET(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells.

Drug Research ◽  
2019 ◽  
Vol 69 (10) ◽  
pp. 528-536
Author(s):  
Najat Bouchmaa ◽  
Reda Ben Mrid ◽  
Youness Boukharsa ◽  
Youssef Bouargalne ◽  
Mohamed Nhiri ◽  
...  

Abstract Background In cancer cells, the intracellular antioxidant capacity and the redox homeostasis are mainly maintained by the glutathione- and thioredoxin-dependent systems which are considered as promising targets for anticancer drugs. Pyridazinones constitute an interesting source of heterocyclic compounds for drug discovery. The present investigation focused on studying the in-vitro antitumor activity of newly synthesized Pyridazin-3(2h)-ones derivatives against P815 (Murin mastocytoma) cell line. Methods The in-vitro cytotoxic activities were investigated toward the P815 cell line using tetrazolium-based MTT assay. Lipid peroxidation and the specific activities of antioxidant enzymes were also determined. Results The newly compounds had a selective dose-dependent cytotoxic effect without affecting normal cells (PBMCs). Apoptosis was further confirmed through the characteristic apoptotic morphological changes and DNA fragmentation. Two compounds (6f and 7h) were highly cytotoxic and were submitted to extend biological testing to determine the likely mechanisms of their cytotoxicity. Results showed that these molecules may induce cytotoxicity via disturbing the redox homeostasis. Importantly, the anticancer activity of 6f and 7h could be due to the intracellular reactive oxygen species hypergeneration through significant loss of glutathione reductase and thioredoxin reductase activities. This eventually leads to oxidative stress-mediated P815 cell apoptosis. Furthermore, the co-administration of 6f or 7h with Methotrexate exhibited a synergistic cytotoxic effect. Conclusions considering their significant anticancer activity and chemosensitivity, 6f and 7h may improve the therapeutic efficacy of the current treatment for cancer.


2014 ◽  
Vol 463 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Tatsuro Kawamura ◽  
Yasumitsu Kondoh ◽  
Makoto Muroi ◽  
Makoto Kawatani ◽  
Hiroyuki Osada

A new cytotoxic compound was found in our chemical library. We revealed that the compound induced reactive oxygen species through glutathione depletion. Moreover, the compound was effective against several cancer cell lines including those harbouring KRAS.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Liang Zhang ◽  
Liwei Zhou ◽  
Jia Du ◽  
Mengxia Li ◽  
Chengyuan Qian ◽  
...  

Ebselen a selenoorganic compound showing glutathione peroxidase like activity is an anti-inflammatory and antioxidative agent. Its cytoprotective activity has been investigated in recent years. However, experimental evidence also shows that ebselen causes cell death in several cancer cell types whose mechanism has not yet been elucidated. In this study, we examined the effect of ebselen on multiple myeloma (MM) cell lines in vitro. The results showed that ebselen significantly enhanced the production of reactive oxygen species (ROS) accompanied by cell viability decrease and apoptosis rate increase. Further studies revealed that ebselen can induce Bax redistribution from the cytosol to mitochondria leading to mitochondrial membrane potential ΔΨm changes and cytochrome C release from the mitochondria to cytosol. Furtherly, we found that exogenous addition of N-acetyl cysteine (NAC) completely diminished the cell damage induced by ebselen. This result suggests that relatively high concentration of ebselen can induce MM cells apoptosis in culture by enhancing the production of endogenous ROS and triggering mitochondria mediated apoptotic pathway.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Tianhe Huang ◽  
Fuling Zhou ◽  
Xiaohan Yuan ◽  
Tian Yang ◽  
Xuan Liang ◽  
...  

Background. The mechanisms of crosstalk between depression and gastric cancer (GC) remain ill defined. Given that reactive oxygen species (ROS) is involved in the pathophysiology of both GC and depression, we try to explore the activities of ROS in the development of GC and GC-related depression. Methods. 110 patients with newly diagnosed GC were recruited in our study. The clinical characteristics of these patients were recorded. Inflammation and oxidative stress markers were detected by ELISA. The depression status of patients with GC was assessed during follow-up. The association between ROS, ABL1, and inflammation factors was evaluated in H2O2-treated GC cell lines and The Cancer Genome Atlas (TCGA) database. The effect of ABL1 on inflammation was detected with Imatinib/Nilotinib-treated GC cell lines. A chronic mild stress- (CMS-) induced patient-derived xenograft (PDX) mice model was established to assess the crosstalk between depression and GC. Results. Depression was correlated with poor prognosis of patients with GC. GC patients with depression were under a high level of oxidative status as well as dysregulated inflammation. In the CMS-induced GC PDX mice model, CMS could facilitate the development of GC. Additionally, tumor bearing could induce depressive-like behaviors of mice. With the treatment of ROS, the activities of ABL1 and inflammatory signaling were enhanced both in vitro and in vivo, and blocking the activities of ABL1 inhibited inflammatory signaling. Conclusions. ROS-activated ABL1 mediates inflammation through regulating NF-κB1 and STAT3, which subsequently leads to the development of GC and GC-related depression.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1336
Author(s):  
Blanca Cucarull ◽  
Anna Tutusaus ◽  
Tania Hernáez-Alsina ◽  
Pablo García de Frutos ◽  
María Reig ◽  
...  

Sorafenib and regorafenib, multikinase inhibitors (MKIs) used as standard chemotherapeutic agents for hepatocellular carcinoma (HCC), generate reactive oxygen species (ROS) during cancer treatment. Antioxidant supplements are becoming popular additions to our diet, particularly glutathione derivatives and mitochondrial-directed compounds. To address their possible interference during HCC chemotherapy, we analyzed the effect of common antioxidants using hepatoma cell lines and tumor spheroids. In liver cancer cell lines, sorafenib and regorafenib induced mitochondrial ROS production and potent cell death after glutathione depletion. In contrast, cabozantinib only exhibited oxidative cell death in specific HCC cell lines. After sorafenib and regorafenib administration, antioxidants such as glutathione methyl ester and the superoxide scavenger MnTBAP decreased cell death and ROS production, precluding the MKI activity against hepatoma cells. Interestingly, sorafenib-induced mitochondrial damage caused PINK/Parkin-dependent mitophagy stimulation, altered by increased ROS production. Finally, in sorafenib-treated tumor spheroids, while ROS induction reduced tumor growth, antioxidant treatments favored tumor development. In conclusion, the anti-tumor activity of specific MKIs, such as regorafenib and sorafenib, is altered by the cellular redox status, suggesting that uncontrolled antioxidant intake during HCC treatment should be avoided or only endorsed to diminish chemotherapy-induced side effects, always under medical scrutiny.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Piero Sestili ◽  
Carmela Fimognari

According to recent estimates, cancer continues to remain the second leading cause of death and is becoming the leading one in old age. Failure and high systemic toxicity of conventional cancer therapies have accelerated the identification and development of innovative preventive as well as therapeutic strategies to contrast cancer-associated morbidity and mortality. In recent years, increasing body ofin vitroandin vivostudies has underscored the cancer preventive and therapeutic efficacy of the isothiocyanate sulforaphane. In this review article, we highlight that sulforaphane cytotoxicity derives from complex, concurring, and multiple mechanisms, among which the generation of reactive oxygen species has been identified as playing a central role in promoting apoptosis and autophagy of target cells. We also discuss the site and the mechanism of reactive oxygen species’ formation by sulforaphane, the toxicological relevance of sulforaphane-formed reactive oxygen species, and the death pathways triggered by sulforaphane-derived reactive oxygen species.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5136
Author(s):  
Mohammed Al-Hayali ◽  
Aimie Garces ◽  
Michael Stocks ◽  
Hilary Collins ◽  
Tracey D. Bradshaw

Thymoquinone (TQ) is the main biologically active constituent of Nigella sativa. Many studies have confirmed its anticancer actions. Herein, we investigated the different anticancer activities of, and considered resistance mechanisms to, TQ. MTT and clonogenic data showed TQ’s ability to suppress breast MDA-MB-468 and T-47D proliferation at lower concentrations compared to other cancer and non-transformed cell lines tested (GI50 values ≤ 1.5 µM). Flow-cytometric analyses revealed that TQ consistently induced MDA-MB-468 and T-47D cell-cycle perturbation, specifically inducing pre-G1 populations. In comparison, less sensitive breast MCF-7 and colon HCT-116 cells exhibited only transient increases in pre-G1 events. Annexin V/PI staining confirmed apoptosis induction in MDA-MB-468 and HCT-116 cells, which was continuous in the former and transient in the latter. Experiments revealed the role of reactive oxygen species (ROS) generation and aneuploidy induction in MDA-MB-468 cells within the first 24 h of treatment. The ROS-scavenger NAD(P)H dehydrogenase (quinone 1) (NQO1; DT-diaphorase) and glutathione (GSH) were implicated in resistance to TQ. Indeed, western blot analyses showed that NQO1 is expressed in all cell lines in this study, except those most sensitive to TQ-MDA-MB-468 and T-47D. Moreover, TQ treatment increased NQO1 expression in HCT-116 in a concentration-dependent fashion. Measurement of GSH activity in MDA-MB-468 and HCT-116 cells found that GSH is similarly active in both cell lines. Furthermore, GSH depletion rendered these cells more sensitive to TQ’s antiproliferative actions. Therefore, to bypass putative inactivation of the TQ semiquinone metabolite, the benzylamine analogue was designed and synthesised following modification of TQ’s carbon-3 atom. However, the structural modification negatively impacted potency against MDA-MB-468 cells. In conclusion, we disclose the following: (i) The anticancer activity of TQ may be a consequence of ROS generation and aneuploidy; (ii) Early GSH depletion could substantially enhance TQ’s anticancer activity; (iii) Benzylamine substitution at TQ’s carbon-3 failed to enhance anticancer activity.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1300
Author(s):  
Steven Behnisch-Cornwell ◽  
Lisa Wolff ◽  
Patrick J. Bednarski

The role of glutathione peroxidases (GPx) in cancer and their influence on tumor prognosis and the development of anticancer drug resistance has been extensively and controversially discussed. The aim of this study was to evaluate the influence of GPx1 expression on anticancer drug cytotoxicity. For this purpose, a GPx1 knockout of the near-haploid human cancer cell line HAP-1 was generated and compared to the native cell line with regards to morphology, growth and metabolic rates, and oxidative stress defenses. Furthermore, the IC50 values of two peroxides and 16 widely used anticancer drugs were determined in both cell lines. Here we report that the knockout of GPx1 in HAP-1 cells has no significant effect on cell size, viability, growth and metabolic rates. Significant increases in the cytotoxic potency of hydrogen peroxide and tert-butylhydroperoxide, the anticancer drugs cisplatin and carboplatin as well as the alkylating agents lomustine and temozolomide were found. While a concentration dependent increases in intracellular reactive oxygen species (ROS) levels were observed for both HAP-1 cell lines treated with either cisplatin, lomustine or temozolamide, no significant enhancement in ROS levels was observed in the GPx1 knockout compared to the native cell line except at the highest concentration of temozolamide. On the other hand, a ca. 50% decrease in glutathione levels was noted in the GPx1 knockout relative to the native line, suggesting that factors other than ROS levels alone play a role in the increased cytotoxic activity of these drugs in the GPx1 knockout cells.


2021 ◽  
Vol 50 (3) ◽  
pp. 114-121
Author(s):  
Lukáš Malina ◽  
Kateřina Bartoň Tománková ◽  
Barbora Hošíková ◽  
Jana Jiravová ◽  
Jakub Hošík ◽  
...  

Rose bengal and erythrosin B are xanthene dyes mainly known and used as antimicrobial agents, but due to their photodynamic activity they are also potential photosensitizers for cancer photodynamic therapy. The aim of this work is to study a photodynamic efficacy of rose bengal and erythrosin B against human skin melanoma and mouse fibroblast cell lines, compare them with each other and find out their photodynamic properties induced by light emitting diodes with total light dose of 5 J/cm2. To fully identify and understand photodynamic properties of both potentially effective photosensitizers, a set of complex in vitro tests such as cell cytotoxic assay, measurement of reactive oxygen species production, mitochondrial membrane potential change assay, mode of cell death determination or comet assay were made. Although both photosensitizers proved to have similar properties such as increasing production of reactive oxygen species with the higher concentration, predominance of necrotic mode of death or genotoxicity, the more effective photosensitizer was rose bengal because its EC50 was over 20 times lower for both cell lines than in case of erythrosin B.  


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5567-5567
Author(s):  
Karin Melanie Rohrer ◽  
Gernot Bruchelt ◽  
Rupert Handgretinger ◽  
Ursula Holzer

Abstract Neuroblastoma is the most common solid cancer in childhood with high relapse and mortality rates. Furthermore, high risk neuroblastoma is often accompanied by an infaust prognosis. The 5-nitrofuran nifurtimox, usually used in the treatment of Chagas disease, showed cytotoxic effects against neuroblastoma in vitro and in experimental therapy, which is presumably due to the formation of oxidative stress. Inducing oxidative stress is a well investigated and suitable strategy in the treatment of malignant diseases in vitro but often encounters difficulties in clinical administration. Thus, nifurtimox as a well-established drug represents a promising new approach in treating neuroblastoma. Combining the induction of reactive oxygen species by application of nifurtimox with a blockade of the cells’ own stress response might even increase the cytotoxic effects. The chaperones heat shock protein 70 and 90 (Hsp70/Hsp90) are responsible for refolding or degrading damaged proteins, especially after stress situations such as heat or oxidative stress. Therefore, the roles of Hsp70 and Hsp90 were investigated in more detail. The commercially available human neuroblastoma cell lines IMR-32, LA-N-1 and the cell line LS, which has been established in the children’s hospital Tuebingen, were exposed to increasing doses of nifurtimox (0.070 mM to 0.348 mM) and incubated for 1, 2 or 3 days. It could be observed that cell viability of all cell lines was significantly and dose-dependently reduced (p<0.01) after nifurtimox treatment. An average reduction of cell viability by 50% was achieved after 24h incubation with 0.348 mM nifurtimox (LS and IMR-32). The assumption that nifurtimox induces the formation of reactive oxygen species could be confirmed. The amount of intracellular reactive oxygen species was significantly increased (p<0.05) in a dose-dependent manner in all cell lines after 24h. Furthermore, expression levels of heat shock proteins Hsp70 and Hsp90 were investigated. Western blot analysis revealed increased intracellular expression levels for both heat shock proteins after 24h nifurtimox treatment. Concluding that Hsp70 and Hsp90 have important roles in tumor cell survival, it was decided to specifically inhibit Hsp90. For this purpose, the neuroblastoma cell lines were treated with the geldanamycin analog 17-Dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG). After inhibition of Hsp90 cells were additionally incubated with the previously used dosages of nifurtimox. A significant higher reduction of the cell viability (p<0.001) could be observed for all neuroblastoma cell lines compared to the application of nifurtimox or 17-DMAG alone. In conclusion, nifurtimox increases oxidative stress in neuroblastoma cell lines leading to significantly decreased cell viability. The specific inhibition of Hsp90 additionally intensifies this effect. The findings suggest that the combined administration of nifurtimox and the specific Hsp90 inhibitor 17-DMAG leads to a synergistic and favorable effect in the treatment of neuroblastoma. More importantly, being an approved medication and well investigated in a wide variety of clinical trials, nifurtimox and 17-DMAG are easy accessible and create a promising new approach not only in neuroblastoma treatment. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document