scholarly journals Conserved mechanism of cell-wall synthase regulation revealed by the identification of a new PBP activator inPseudomonas aeruginosa

2018 ◽  
Vol 115 (12) ◽  
pp. 3150-3155 ◽  
Author(s):  
Neil G. Greene ◽  
Coralie Fumeaux ◽  
Thomas G. Bernhardt

Penicillin-binding proteins (PBPs) are synthases required to build the essential peptidoglycan (PG) cell wall surrounding most bacterial cells. The mechanisms regulating the activity of these enzymes to control PG synthesis remain surprisingly poorly defined given their status as key antibiotic targets. Several years ago, the outer-membrane lipoproteinEcLpoB was identified as a critical activator ofEscherichia coliPBP1b (EcPBP1b), one of the major PG synthases of this organism. Activation ofEcPBP1b is mediated through the association ofEcLpoB with a regulatory domain onEcPBP1b called UB2H. Notably,Pseudomonas aeruginosaalso encodes PBP1b (PaPBP1b), which possesses a UB2H domain, but this bacterium lacks an identifiable LpoB homolog. We therefore searched for potentialPaPBP1b activators and identified a lipoprotein unrelated to LpoB that is required for the in vivo activity ofPaPBP1b. We named this protein LpoP and found that it interacts directly withPaPBP1b in vitro and is conserved in many Gram-negative species. Importantly, we also demonstrated thatPaLpoP-PaPBP1b as well as an equivalent protein pair fromAcinetobacter baylyican fully substitute forEcLpoB-EcPBP1b inE. colifor PG synthesis. Furthermore, we show that amino acid changes inPaPBP1b that bypass thePaLpoP requirement map to similar locations in the protein as changes promotingEcLpoB bypass inEcPBP1b. Overall, our results indicate that, although different Gram-negative bacteria activate their PBP1b synthases with distinct lipoproteins, they stimulate the activity of these important drug targets using a conserved mechanism.

1999 ◽  
Vol 43 (4) ◽  
pp. 738-744 ◽  
Author(s):  
P. J. Petersen ◽  
N. V. Jacobus ◽  
W. J. Weiss ◽  
P. E. Sum ◽  
R. T. Testa

ABSTRACT The 9-t-butylglycylamido derivative of minocycline (TBG-MINO) is a recently synthesized member of a novel group of antibiotics, the glycylcyclines. This new derivative, like the first glycylcyclines, theN,N-dimethylglycylamido derivative of minocycline and 6-demethyl-6-deoxytetracycline, possesses activity against bacterial isolates containing the two major determinants responsible for tetracycline resistance: ribosomal protection and active efflux. The in vitro activities of TBG-MINO and the comparative agents were evaluated against strains with characterized tetracycline resistance as well as a spectrum of recent clinical aerobic and anaerobic gram-positive and gram-negative bacteria. TBG-MINO, with an MIC range of 0.25 to 0.5 μg/ml, showed good activity against strains expressing tet(M) (ribosomal protection), tet(A), tet(B),tet(C), tet(D), and tet(K) (efflux resistance determinants). TBG-MINO exhibited similar activity against methicillin-resistant Staphylococcus aureus (MRSA), penicillin-resistant streptococci, and vancomycin-resistant enterococci (MICs at which 90% of strains are inhibited, ≤0.5 μg/ml). TBG-MINO exhibited activity against a wide diversity of gram-negative aerobic and anaerobic bacteria, most of which were less susceptible to tetracycline and minocycline. The in vivo protective effects of TBG-MINO were examined against acute lethal infections in mice caused by Escherichia coli, S. aureus, andStreptococcus pneumoniae isolates. TBG-MINO, administered intravenously, demonstrated efficacy against infections caused byS. aureus including MRSA strains and strains containingtet(K) or tet(M) resistance determinants (median effective doses [ED50s], 0.79 to 2.3 mg/kg of body weight). TBG-MINO demonstrated efficacy against infections caused by tetracycline-sensitive E. coli strains as well asE. coli strains containing either tet(M) or the efflux determinant tet(A), tet(B), ortet(C) (ED50s, 1.5 to 3.5 mg/kg). Overall, TBG-MINO shows antibacterial activity against a wide spectrum of gram-positive and gram-negative aerobic and anaerobic bacteria including strains resistant to other chemotherapeutic agents. The in vivo protective effects, especially against infections caused by resistant bacteria, corresponded with the in vitro activity of TBG-MINO.


2019 ◽  
Vol 20 (19) ◽  
pp. 4877 ◽  
Author(s):  
Marlon H. Cardoso ◽  
Beatriz T. Meneguetti ◽  
Bruna O. Costa ◽  
Danieli F. Buccini ◽  
Karen G. N. Oshiro ◽  
...  

The advent of multidrug resistance among pathogenic bacteria has attracted great attention worldwide. As a response to this growing challenge, diverse studies have focused on the development of novel anti-infective therapies, including antimicrobial peptides (AMPs). The biological properties of this class of antimicrobials have been thoroughly investigated, and membranolytic activities are the most reported mechanisms by which AMPs kill bacteria. Nevertheless, an increasing number of works have pointed to a different direction, in which AMPs are seen to be capable of displaying non-lytic modes of action by internalizing bacterial cells. In this context, this review focused on the description of the in vitro and in vivo antibacterial and antibiofilm activities of non-lytic AMPs, including indolicidin, buforin II PR-39, bactenecins, apidaecin, and drosocin, also shedding light on how AMPs interact with and further translocate through bacterial membranes to act on intracellular targets, including DNA, RNA, cell wall and protein synthesis.


Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 192 ◽  
Author(s):  
Feng Wang ◽  
Xinyu Ji ◽  
Qiupeng Li ◽  
Guanling Zhang ◽  
Jiani Peng ◽  
...  

New strategies against antibiotic-resistant bacterial pathogens are urgently needed but are not within reach. Here, we present in vitro and in vivo antimicrobial activity of TSPphg, a novel phage lysin identified from extremophilic Thermus phage TSP4 by sequencing its whole genome. By breaking down the bacterial cells, TSPphg is able to cause bacteria destruction and has shown bactericidal activity against both Gram-negative and Gram-positive pathogenic bacteria, especially antibiotic-resistant strains of Klebsiella pneumoniae, in which the complete elimination and highest reduction in bacterial counts by greater than 6 logs were observed upon 50 μg/mL TSPphg treatment at 37 °C for 1 h. A murine skin infection model further confirmed the in vivo efficacy of TSPphg in removing a highly dangerous and multidrug-resistant Staphylococcus aureus from skin damage and in accelerating wound closure. Together, our findings may offer a therapeutic alternative to help fight bacterial infections in the current age of mounting antibiotic resistance, and to shed light on bacteriophage-based strategies to develop novel anti-infectives.


1941 ◽  
Vol 73 (5) ◽  
pp. 629-640 ◽  
Author(s):  
René J. Dubos ◽  
Rollin D. Hotchkiss

Several species of aerobic sporulating bacilli recently isolated from soil, sewage, manure, and cheese, as well as authentic strains obtained from type culture collections, have been found to exhibit antagonistic activity against unrelated microorganisms. Cultures of these aerobic sporulating bacilli yield an alcohol-soluble, water-insoluble fraction,—tyrothricin,—which is bactericidal for most Gram-positive and Gram-negative microbial species. Two different crystalline products have been separated from tyrothricin. One, which may be called tyrocidine, is bactericidal in vitro for both Gram-positive and Gram-negative species; the other substance, gramicidin, is effective only against Gram-positive microorganisms. In general, tyrocidine behaves like a protoplasmic poison and like other antiseptics, loses much of its activity in the presence of animal tissues. Gramicidin on the contrary exerts a much more subtle physiological effect on the susceptible bacterial cells and, when applied locally at the site of the infection, retains in vivo a striking activity against Gram-positive microorganisms.


2019 ◽  
Author(s):  
Xinxing Yang ◽  
Ryan McQuillen ◽  
Zhixin Lyu ◽  
Polly Phillips-Mason ◽  
Ana De La Cruz ◽  
...  

AbstractDuring bacterial cell division, synthesis of new septal peptidoglycan (sPG) is crucial for successful cytokinesis and cell pole morphogenesis. FtsW, a SEDS (Shape, Elongation, Division and Sporulation) family protein and an indispensable component of the cell division machinery in all walled bacterial species, was recently identified in vitro as a new monofunctional peptidoglycan glycosyltransferase (PGTase). FtsW and its cognate monofunctional transpeptidase (TPase) class B penicillin binding protein (PBP3 or FtsI in E. coli) may constitute the essential, bifunctional sPG synthase specific for new sPG synthesis. Despite its importance, the septal PGTase activity of FtsW has not been documented in vivo. How its activity is spatiotemporally regulated in vivo has also remained unknown. Here we investigated the septal PGTase activity and dynamics of FtsW in E. coli cells using a combination of single-molecule imaging and genetic manipulations. We show that FtsW exhibits robust activity to incorporate an N-acetylmuramic acid analog at septa in the absence of other known PGTases, confirming FtsW as the essential septum-specific PGTase in vivo. Notably, we identified two populations of processive moving FtsW molecules at septa. A fast-moving population is driven by the treadmilling dynamics of FtsZ and independent of sPG synthesis. A slow-moving population is driven by active sPG synthesis and independent of FtsZ’s treadmilling dynamics. We further identified that FtsN, a potential sPG synthesis activator, plays an important role in promoting the slow-moving, sPG synthesis-dependent population. Our results support a two-track model, in which inactive sPG synthase molecules follow the fast treadmilling “Z-track” to be distributed along the septum; FtsN promotes their release from the “Z-track” to become active in sPG synthesis on the slow “sPG-track”. This model explains how the spatial information is integrated into the regulation of sPG synthesis activity and suggests a new mechanistic framework for the spatiotemporal coordination of bacterial cell wall constriction.


2021 ◽  
Author(s):  
Adeeba H Dhalech ◽  
Tara D Fuller ◽  
Christopher M Robinson

Enteric viruses infect the mammalian gastrointestinal tract and lead to significant morbidity and mortality worldwide. Data indicate that enteric viruses can utilize intestinal bacteria to promote viral replication and pathogenesis. However, the precise interactions between enteric viruses and bacteria are unknown. Here we examined the interaction between bacteria and Coxsackievirus B3, an enteric virus from the picornavirus family. We found that bacteria enhance the infectivity of Coxsackievirus B3 (CVB3) in vitro. Notably, specific bacteria are required as gram-negative Salmonella enterica, but not Escherichia coli, enhanced CVB3 infectivity and stability. Investigating the cell wall components of both S. enterica and E. coli revealed that structures in the O-antigen or core of lipopolysaccharide, a major component of the gram-negative bacterial cell wall, were required for S. enterica to enhance CVB3. To determine if these requirements were necessary for similar enteric viruses, we investigated if S. enterica and E. coli enhanced infectivity of poliovirus, another enteric virus in the picornavirus family. We found that, in contrast to CVB3, these bacteria enhanced the infectivity of poliovirus in vitro. Overall, these data indicate that distinct bacteria enhance CVB3 infectivity and stability, and specific enteric viruses may have differing requirements for their interactions with specific bacterial species.


2020 ◽  
Vol 117 (21) ◽  
pp. 11692-11702 ◽  
Author(s):  
Jung-Ho Shin ◽  
Alan G. Sulpizio ◽  
Aaron Kelley ◽  
Laura Alvarez ◽  
Shannon G. Murphy ◽  
...  

Most bacteria surround themselves with a cell wall, a strong meshwork consisting primarily of the polymerized aminosugar peptidoglycan (PG). PG is essential for structural maintenance of bacterial cells, and thus for viability. PG is also constantly synthesized and turned over; the latter process is mediated by PG cleavage enzymes, for example, the endopeptidases (EPs). EPs themselves are essential for growth but also promote lethal cell wall degradation after exposure to antibiotics that inhibit PG synthases (e.g., β-lactams). Thus, EPs are attractive targets for novel antibiotics and their adjuvants. However, we have a poor understanding of how these enzymes are regulated in vivo, depriving us of novel pathways for the development of such antibiotics. Here, we have solved crystal structures of the LysM/M23 family peptidase ShyA, the primary EP of the cholera pathogenVibrio cholerae. Our data suggest that ShyA assumes two drastically different conformations: a more open form that allows for substrate binding and a closed form, which we predicted to be catalytically inactive. Mutations expected to promote the open conformation caused enhanced activity in vitro and in vivo, and these results were recapitulated in EPs from the divergent pathogensNeisseria gonorrheaeandEscherichia coli. Our results suggest that LysM/M23 EPs are regulated via release of the inhibitory Domain 1 from the M23 active site, likely through conformational rearrangement in vivo.


2018 ◽  
Vol 115 (11) ◽  
pp. 2812-2817 ◽  
Author(s):  
Andrew K. Fenton ◽  
Sylvie Manuse ◽  
Josué Flores-Kim ◽  
Pierre Simon Garcia ◽  
Chryslène Mercy ◽  
...  

Most bacterial cells are surrounded by an essential cell wall composed of the net-like heteropolymer peptidoglycan (PG). Growth and division of bacteria are intimately linked to the expansion of the PG meshwork and the construction of a cell wall septum that separates the nascent daughter cells. Class A penicillin-binding proteins (aPBPs) are a major family of PG synthases that build the wall matrix. Given their central role in cell wall assembly and importance as drug targets, surprisingly little is known about how the activity of aPBPs is controlled to properly coordinate cell growth and division. Here, we report the identification of MacP (SPD_0876) as a membrane-anchored cofactor of PBP2a, an aPBP synthase of the Gram-positive pathogen Streptococcus pneumoniae. We show that MacP localizes to the division site of S. pneumoniae, forms a complex with PBP2a, and is required for the in vivo activity of the synthase. Importantly, MacP was also found to be a substrate for the kinase StkP, a global cell cycle regulator. Although StkP has been implicated in controlling the balance between the elongation and septation modes of cell wall synthesis, none of its substrates are known to modulate PG synthetic activity. Here we show that a phosphoablative substitution in MacP that blocks StkP-mediated phosphorylation prevents PBP2a activity without affecting the MacP–PBP2a interaction. Our results thus reveal a direct connection between PG synthase function and the control of cell morphogenesis by the StkP regulatory network.


1997 ◽  
Vol 41 (10) ◽  
pp. 2209-2213 ◽  
Author(s):  
J H Kim ◽  
J A Kang ◽  
Y G Kim ◽  
J W Kim ◽  
J H Lee ◽  
...  

CFC-222 is a novel fluoroquinolone containing a C-7 bicyclic amine moiety with potent antibacterial activities against gram-positive, gram-negative, and anaerobic organisms. We compared the in vitro and in vivo activities of CFC-222 with those of ciprofloxacin, ofloxacin, and lomefloxacin. CFC-222 was more active than the other fluoroquinolones tested against gram-positive bacteria. CFC-222 was particularly active against Streptococcus pneumoniae (MIC at which 90% of isolates are inhibited [MIC90], 0.2 microg/ml), Staphylococcus aureus (MIC90, 0.2 microg/ml for ciprofloxacin-susceptible strains), and Enterococcus faecalis (MIC90, 0.39 microg/ml). Against Escherichia coli and other members of the family Enterobacteriaceae, CFC-222 was slightly less active than ciprofloxacin (MIC90s for E. coli, 0.1 and 0.025 microg/ml, respectively). The in vitro activity of CFC-222 was not influenced by inoculum size, medium composition, or the presence of horse serum. However, its activity was decreased significantly by a change in the pH of the medium from 7.0 to 6.0, as was the case for the other quinolones tested. The in vivo protective efficacy of CFC-222 by oral administration was greater than those of the other quinolones tested in a mouse model of intraperitoneally inoculated systemic infection caused by S. aureus. CFC-222 exhibited efficacy comparable to that of ciprofloxacin in the same model of infection caused by gram-negative organisms, such as E. coli and Klebsiella pneumoniae. In this infection model, CFC-222 was slightly less active than ciprofloxacin against Pseudomonas aeruginosa. These results suggest that CFC-222 may be a promising therapeutic agent in various bacterial infections.


2000 ◽  
Vol 68 (8) ◽  
pp. 4422-4429 ◽  
Author(s):  
Wei Cui ◽  
David C. Morrison ◽  
Richard Silverstein

ABSTRACT Viable Escherichia coli and Staphylococcus aureus bacteria elicited markedly different in vitro tumor necrosis factor alpha (TNF-α) responses when placed in coculture with peritoneal murine macrophages. These include quantitative differences in TNF-α mRNA expression and corresponding protein product secretion as well as kinetic differences in the profiles of the TNF-α responses. Further, lipopolysaccharide (from E. coli) is a major contributing factor to these differences, as revealed by comparative experiments with endotoxin-responsive (C3Heb/FeJ) and endotoxin-hyporesponsive (C3H/HeJ) macrophages. Nevertheless, the eventual overall magnitude of the TNF-α secretion of macrophages in response to S. aureus was at least equivalent to that observed with E. coli, while appearing at time periods hours later than the E. coli-elicited TNF-α response. Both the magnitude and kinetic profile of the TNF-α responses were found to be relatively independent of the rate of bacterial proliferation, at least to the extent that similar results were observed with both viable and paraformaldehyde-killed microbes. Nevertheless, S. aureus treated in culture with the carbapenem antibiotic imipenem manifests markedly altered profiles of TNF-α response, with the appearance of an early TNF-α peak not seen with viable organisms, a finding strikingly similar to that recently reported by our laboratory from in vivo studies (R. Silverstein, J. G. Wood, Q. Xue, M. Norimatsu, D. L. Horn, and D. C. Morrison, Infect. Immun. 68:2301–2308, 2000). In contrast, imipenem treatment of E. coli-cocultured macrophages does not significantly alter the observed TNF-α response either in vitro or in vivo. In conclusion, our data support the concept that the host inflammatory response of cultured mouse macrophages in response to viable gram-positive versus gram-negative microbes exhibits distinctive characteristics and that these distinctions are, under some conditions, altered on subsequent bacterial killing, depending on the mode of killing. Of potential importance, these distinctive in vitro TNF-α profiles faithfully reflect circulating levels of TNF-α in infected mice. These results suggest that coculture of peritoneal macrophages with viable versus antibiotic-killed bacteria and subsequent assessment of cytokine response (TNF-α) may be of value in clarifying, and ultimately controlling, related host inflammatory responses in septic patients.


Sign in / Sign up

Export Citation Format

Share Document