scholarly journals Particle motion on burned and vegetated hillslopes

2020 ◽  
Vol 117 (41) ◽  
pp. 25335-25343
Author(s):  
Danica L. Roth ◽  
Tyler H. Doane ◽  
Joshua J. Roering ◽  
David J. Furbish ◽  
Aaron Zettler-Mann

Climate change is causing increasingly widespread, frequent, and intense wildfires across the western United States. Many geomorphic effects of wildfire are relatively well studied, yet sediment transport models remain unable to account for the rapid transport of sediment released from behind incinerated vegetation, which can fuel catastrophic debris flows. This oversight reflects the fundamental inability of local, continuum-based models to capture the long-distance particle motions characteristic of steeplands. Probabilistic, particle-based nonlocal models may address this deficiency, but empirical data are needed to constrain their representation of particle motion in real landscapes. Here we present data from field experiments validating a generalized Lomax model for particle travel distance distributions. The model parameters provide a physically intuitive mathematical framework for describing the transition from light- to heavy-tailed distributions along a continuum of behavior as particle size increases and slopes get steeper and/or smoother. We show that burned slopes are measurably smoother than vegetated slopes, leading to 1) lower rates of experimental particle disentrainment and 2) runaway motion that produces the heavy-tailed travel distances often associated with nonlocal transport. Our results reveal that surface roughness is a key control on steepland sediment transport, particularly after wildfire when smoother surfaces may result in the preferential delivery of coarse material to channel networks that initiate debris flows. By providing a first-order framework relating the statistics of particle motion to measurable surface characteristics, the Lomax model both advances the development of nonlocal sediment transport theory and reveals insights on hillslope transport mechanics.

2018 ◽  
Author(s):  
Adel Albaba ◽  
Massimiliano Schwarz ◽  
Corinna Wendeler ◽  
Bernard Loup ◽  
Luuk Dorren

Abstract. This paper presents a Discrete Element-based elasto-plastic-adhesive model which is adapted and tested for producing hillslope debris flows. The numerical model produces three phases of particle contacts: elastic, plastic and adhesion. The model capabilities of simulating different types of cohesive granular flows were tested with different ranges of flow velocities and heights. The basic model parameters, being the basal friction (ϕb) and normal restitution coefficient (ϵn), were calibrated using field experiments of hillslope debris flows impacting two sensors. Simulations of 50 m3 of material were carried out on a channelized surface that is 41 m long and 8 m wide. The calibration process was based on measurements of flow height, flow velocity and the pressure applied to a sensor. Results of the numerical model matched well those of the field data in terms of pressure and flow velocity while less agreement was observed for flow height. Those discrepancies in results were due in part to the deposition of material in the field test which are not reproducible in the model. A parametric study was conducted to further investigate that effect of model parameters and inclination angle on flow height, velocity and pressure. Results of best-fit model parameters against selected experimental tests suggested that a link might exist between the model parameters ϕb and ϵn and the initial conditions of the tested granular material (bulk density and water and fine contents). The good performance of the model against the full-scale field experiments encourages further investigation by conducting lab-scale experiments with detailed variation of water and fine content to better understand their link to the model's parameters.


2019 ◽  
Vol 19 (11) ◽  
pp. 2339-2358
Author(s):  
Adel Albaba ◽  
Massimiliano Schwarz ◽  
Corinna Wendeler ◽  
Bernard Loup ◽  
Luuk Dorren

Abstract. This paper presents a discrete-element-based elastoplastic-adhesive model which is adapted and tested for producing hillslope debris flows. The numerical model produces three phases of particle contacts: elastic, plastic and adhesive. A parametric study was conducted investigating the effect of model parameters and inclination angle on flow height, velocity and pressure, in order to define the most sensitive parameters to calibrate. The model capabilities of simulating different types of cohesive granular flows were tested with different ranges of flow velocities and heights. The basic model parameters, the microscopic basal friction (ϕb) and ratio between stiffness parameters k1/k2, were calibrated using field experiments of hillslope debris flows impacting a pressure-measuring sensor. Simulations of 50 m3 of material were carried out on a channelized surface that is 41 m long and 8 m wide. The calibration process was based on measurements of flow height, flow velocity and the pressure applied to a sensor. Results of the numerical model matched those of the field data in terms of pressure and flow velocity well while less agreement was observed for flow height. Those discrepancies in results were due in part to the deposition of material in the field test, which is not reproducible in the model. Results of best-fit model parameters against selected experimental tests suggested that a link might exist between the model parameters ϕb and k1/k2 and the initial conditions of the tested granular material (bulk density and water and fine contents). The good performance of the model against the full-scale field experiments encourages further investigation by conducting lab-scale experiments with detailed variation in water and fine content to better understand their link to the model's parameters.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1963
Author(s):  
Jingting Yao ◽  
Muhammad Ali Raza Anjum ◽  
Anshuman Swain ◽  
David A. Reiter

Impaired tissue perfusion underlies many chronic disease states and aging. Diffusion-weighted imaging (DWI) is a noninvasive MRI technique that has been widely used to characterize tissue perfusion. Parametric models based on DWI measurements can characterize microvascular perfusion modulated by functional and microstructural alterations in the skeletal muscle. The intravoxel incoherent motion (IVIM) model uses a biexponential form to quantify the incoherent motion of water molecules in the microvasculature at low b-values of DWI measurements. The fractional Fickian diffusion (FFD) model is a parsimonious representation of anomalous superdiffusion that uses the stretched exponential form and can be used to quantify the microvascular volume of skeletal muscle. Both models are established measures of perfusion based on DWI, and the prognostic value of model parameters for identifying pathophysiological processes has been studied. Although the mathematical properties of individual models have been previously reported, quantitative connections between IVIM and FFD models have not been examined. This work provides a mathematical framework for obtaining a direct, one-way transformation of the parameters of the stretched exponential model to those of the biexponential model. Numerical simulations are implemented, and the results corroborate analytical results. Additionally, analysis of in vivo DWI measurements in skeletal muscle using both biexponential and stretched exponential models is shown and compared with analytical and numerical models. These results demonstrate the difficulty of model selection based on goodness of fit to experimental data. This analysis provides a framework for better interpreting and harmonizing perfusion parameters from experimental results using these two different models.


2015 ◽  
Vol 95 (8) ◽  
pp. 1607-1612 ◽  
Author(s):  
E.S. Mekhova ◽  
P.Y. Dgebuadze ◽  
V.N. Mikheev ◽  
T.A. Britayev

Previous experiments with the comatulid Himerometra robustipinna (Carpenter, 1881) demonstrated intensive host-to-host migration processes for almost all symbiotic species both within host aggregations and among hosts separated by several metres. The aim of this study was to check the ability of symbionts to complete long-distance migrations, by means of two in situ experiments which depopulated the crinoid host. Two different sets of field experiments were set up: exposure of depopulated crinoids (set 1) on stony ‘islands’ isolated from native crinoid assemblages by sandy substrate, and (set 2) in cages suspended in the water column. Hosts from set 1 were exposed for 1, 2, 3 and 4 weeks to assess whether substrate has an influence on the symbionts' long-distance migrations. In set 2 cages were exposed for 10–11 days, aiming to check whether symbionts were able to disperse through the water column with currents. These experiments allow the conclusion that post-settled symbionts can actively migrate among their hosts. Symbionts are able to reach their hosts by employing two different ‘transport corridors’, by drifting or swimming in water column, and by moving on the bottom. Comparison of experimental results allows the division of symbionts into two conventional groups according to the dispersal ability of their post-settled stages: (1) species able to complete long-distance migrations, (2) species unable to migrate or having limited dispersal ability. The finding of the free-living shrimp Periclimenes diversipes Kemp, 1922 in set 2 raises the question about the factors that affect such a high degree of specialization of crinoid assemblages.


2021 ◽  
Author(s):  
Matteo Berti ◽  
Alessandro Simoni

<p>Rainfall is the most significant factor for debris flows triggering. Water is needed to saturate the soil, initiate the sediment motion (regardless of the mobilization mechanism) and transform the solid debris into a fluid mass that can move rapidly downslope. This water is commonly provided by rainfall or rainfall and snowmelt. Consequently, most warning systems rely on the use of rainfall thresholds to predict debris flow occurrence. Debris flows thresholds are usually empirically-derived from the rainfall records that caused past debris flows in a certain area, using a combination of selected precipitation measurements (such as event rainfall P, duration D, or average intensity I) that describe critical rainfall conditions. Recent years have also seen a growing interest in the use of coupled hydrological and slope stability models to derive physically-based thresholds for shallow landslide initiation.</p><p>In both cases, rainfall thresholds are affected by significant uncertainty. Sources of uncertainty include: measurement errors; spatial variability of the rainfall field; incomplete or uncertain debris flow inventory; subjective definition of the “rainfall event”; use of subjective criteria to define the critical conditions; uncertainty in model parameters (for physically-based approaches). Rainfall measurement is widely recognized as a main source of uncertainty due to the extreme time-space variability that characterize intense rainfall events in mountain areas. However, significant errors can also arise by inaccurate information reported in landslide inventories on the timing of debris flows, or by the criterion used to define triggering intensities.</p><p>This study analyzes the common sources of uncertainty associated to rainfall thresholds for debris flow occurrence and discusses different methods to quantify them. First, we give an overview of the various approaches used in the literature to measure the uncertainty caused by random errors or procedural defects. These approaches are then applied to debris flows using real data collected in the Dolomites (Northen Alps, Itay), in order to estimate the variabilty of each single factor (precipitation, triggering timing, triggering intensity..). Individual uncertainties are then combined to obtain the overall uncertain of the rainfall threshold, which can be calculated using the classical method of “summation in quadrature” or a more effective approach based on Monte Carlo simulations. The uncertainty budget allows to identify the biggest contributors to the final variability and it is also useful to understand if this variability can be reduced to make our thresholds more precise.</p><p> </p>


2019 ◽  
Vol 157 (3) ◽  
pp. 458-476 ◽  
Author(s):  
Ivar Midtkandal ◽  
Jan Inge Faleide ◽  
Thea Sveva Faleide ◽  
Christopher Sæbø Serck ◽  
Sverre Planke ◽  
...  

AbstractA comprehensive dataset is collated in a study on sediment transport, timing and basin physiography during the Early Cretaceous Period in the Boreal Basin (Barents Sea), one of the world’s largest and longest active epicontinental basins. Long-wavelength tectonic tilt related to the Early Cretaceous High Arctic Large Igneous Province (HALIP) set up a fluvial system that developed from a sediment source area in the NW, which flowed SE across the Svalbard archipelago, terminating in a low-accommodation shallow sea within the Bjarmeland Platform area of the present-day Barents Sea. The basin deepened to the SE with a ramp-like basin floor with gentle dip. Seismic data show sedimentary lobes with internal clinoform geometry that advanced from the NW. These lobes interfingered with, and were overlain by, another younger depositional system with similar lobes sourced from the NE. The integrated data allow mapping of architectural patterns that provide information on basin physiography and control factors on source-to-sink transport and depositional patterns within the giant epicontinental basin. The results highlight how low-gradient, low-accommodation sediment transport and deposition has taken place along proximal to distal profiles for several hundred kilometres, in response to subtle changes in base level and by intra-basinal highs and troughs. Long-distance correlation along depositional dip is therefore possible, but should be treated with caution to avoid misidentification of timelines for diachronous surfaces.


2019 ◽  
Vol 7 (6) ◽  
pp. 172 ◽  
Author(s):  
Evelien Brand ◽  
Lars De Sloover ◽  
Alain De Wulf ◽  
Anne-Lise Montreuil ◽  
Sander Vos ◽  
...  

Sediment transport is a key element in intertidal beach morphodynamics, but measurements of sediment transport are often unreliable. The aim of this study is to quantify and investigate cross-shore sediment transport and the resulting topographic changes for a tide-dominated, sandy beach. Two fortnight-long field experiments were carried out during which hydrodynamics and sediment dynamics were measured with optical and acoustic sensors, while the beach topography was surveyed with a permanent terrestrial laser scanner. Suspended sediment was generally well-mixed and currents were largest at approximately 1.5 m above the bed, which resulted in a peak in sediment transport at 1/3 of the high tide level. The mean transport direction was onshore during calm conditions (wave height <0.6 m) thanks to tidal currents and offshore during energetic conditions due to undertow. Oscillatory transport was always onshore because of wave asymmetry but it was subordinate to mean transport. The intertidal zone showed an alternation of erosion and accretion with formation of morphological features during energetic (no storm) conditionsand smoothening of the morphology during calm conditions. A good qualitative and quantitative agreement was found between the daily cross-shore suspended load and beach volume changes, especially during calm conditions.


Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 38 ◽  
Author(s):  
Mohsen Maleki ◽  
Javier Contreras-Reyes ◽  
Mohammad Mahmoudi

In this paper, we examine the finite mixture (FM) model with a flexible class of two-piece distributions based on the scale mixtures of normal (TP-SMN) family components. This family allows the development of a robust estimation of FM models. The TP-SMN is a rich class of distributions that covers symmetric/asymmetric and light/heavy tailed distributions. It represents an alternative family to the well-known scale mixtures of the skew normal (SMSN) family studied by Branco and Dey (2001). Also, the TP-SMN covers the SMN (normal, t, slash, and contaminated normal distributions) as the symmetric members and two-piece versions of them as asymmetric members. A key feature of this study is using a suitable hierarchical representation of the family to obtain maximum likelihood estimates of model parameters via an EM-type algorithm. The performances of the proposed robust model are demonstrated using simulated and real data, and then compared to other finite mixture of SMSN models.


1997 ◽  
Vol 43 (143) ◽  
pp. 180-191 ◽  
Author(s):  
Ε. M. Morris ◽  
H. -P. Bader ◽  
P. Weilenmann

AbstractA physics-based snow model has been calibrated using data collected at Halley Bay, Antarctica, during the International Geophysical Year. Variations in snow temperature and density are well-simulated using values for the model parameters within the range reported from other polar field experiments. The effect of uncertainty in the parameter values on the accuracy of the predictions is no greater than the effect of instrumental error in the input data. Thus, this model can be used with parameters determined a priori rather than by optimization. The model has been validated using an independent data set from Halley Bay and then used to estimate 10 m temperatures on the Antarctic Peninsula plateau over the last half-century.


JOIDES drilling results provide new evidence concerning facies patterns on evolving passive margins that strengthens and extends hypotheses constructed from studies of morphology, seismic reflexion data and shallow samples on modern margins, and from field geologic studies of uplifted ancient margins. On the slopes and rise, gravity-controlled mechanisms - turbidity currents, debris flows, slides and the like - play the dominant role in sediment transport over the long term, but when clastic supplies are reduced, as for example during rapid transgressions, then oceanic sedimentation and the effects of thermohaline circulation become important. Sedimentary facies models used as the basis of unravelling tectonic complexities of some deformed margins, for example in the Mesozoic Tethys, may be too simplistic in the light of available data from modern continental margins.


Sign in / Sign up

Export Citation Format

Share Document