scholarly journals Hypothalamic extended synaptotagmin-3 contributes to the development of dietary obesity and related metabolic disorders

2020 ◽  
Vol 117 (33) ◽  
pp. 20149-20158 ◽  
Author(s):  
Yi Zhang ◽  
Yunliang Guan ◽  
Susu Pan ◽  
Lihong Yan ◽  
Ping Wang ◽  
...  

The C2domain containing protein extended synaptotagmin (E-Syt) plays important roles in both lipid homeostasis and the intracellular signaling; however, its role in physiology remains largely unknown. Here, we show that hypothalamic E-Syt3 plays a critical role in diet-induced obesity (DIO). E-Syt3 is characteristically expressed in the hypothalamic nuclei. Whole-body or proopiomelanocortin (POMC) neuron-specific ablation ofE-Syt3ameliorated DIO and related comorbidities, including glucose intolerance and dyslipidemia. Conversely, overexpression of E-Syt3 in the arcuate nucleus moderately promoted food intake and impaired energy expenditure, leading to increased weight gain. Mechanistically,E-Syt3ablation led to increased processing of POMC to α-melanocyte-stimulating hormone (α-MSH), increased activities of protein kinase C and activator protein-1, and enhanced expression of prohormone convertases. These findings reveal a previously unappreciated role for hypothalamic E-Syt3 in DIO and related metabolic disorders.

Open Biology ◽  
2016 ◽  
Vol 6 (8) ◽  
pp. 160131 ◽  
Author(s):  
Yuzhong Xiao ◽  
Tingting Xia ◽  
Junjie Yu ◽  
Yalan Deng ◽  
Hao Liu ◽  
...  

Although numerous functions of inositol-requiring enzyme 1α (IRE1α) have been identified, a role of IRE1α in pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus is largely unknown. Here, we showed that mice lacking IRE1α specifically in POMC neurons (PIKO) are lean and resistant to high-fat diet-induced obesity and obesity-related insulin resistance, liver steatosis and leptin resistance. Furthermore, PIKO mice had higher energy expenditure, probably due to increased thermogenesis in brown adipose tissue. Additionally, α-melanocyte-stimulating hormone production was increased in the hypothalamus of PIKO mice. These results demonstrate that IRE1α in POMC neurons plays a critical role in the regulation of obesity and obesity-related metabolic disorders. Our results also suggest that IRE1α is not only an endoplasmic reticulum stress sensor, but also a new potential therapeutic target for obesity and obesity-related metabolic diseases.


2004 ◽  
Vol 286 (2) ◽  
pp. H760-H767 ◽  
Author(s):  
Wilson Nadruz ◽  
Claudia B. Kobarg ◽  
Jörg Kobarg ◽  
Kleber G. Franchini

The transient increase in the expression of transcription factors encoded by immediate-early genes has been considered to play a critical role in the coordination of early gene expression during the hypertrophic growth of cardiac myocytes. Here, we investigated the regulation of c-Jun and its upstream activators JNKs in the myocardium of rats subjected to acute pressure overload induced by transverse aortic constriction. Western blotting and immunohistochemistry analysis demonstrated that both JNK1 and JNK2 were transiently activated by pressure overload, but only JNK1 was activated at the nuclei of cardiac myocytes. JNK1 activation was paralleled by phosphorylation of c-Jun at serine-63 in the myocardial nuclear fraction and by an increase in c-Jun expression in cardiac myocytes. A consistent increase in DNA binding of activator protein-1 (AP-1) complex was observed after 10 and 30 min of pressure overload and Supershift assays confirmed that c-Jun was a major component of activated AP-1 complex. Moreover, experiments performed with the specific JNK inhibitor SP-600125 abolished c-Jun phosphorylation and markedly attenuated its expression as well as the expression of the fetal gene β-myosin heavy chain. Overall, these findings demonstrate a molecular basis for load-induced activation of c-Jun in cardiac myocytes and its connection with the regulation of fetal gene, characteristic of the acute response to pressure overload.


2020 ◽  
Vol 117 (48) ◽  
pp. 30763-30774
Author(s):  
Shanu Jain ◽  
Sai P. Pydi ◽  
Kiran S. Toti ◽  
Bernard Robaye ◽  
Marco Idzko ◽  
...  

Uridine diphosphate (UDP)-activated purinergic receptor P2Y6(P2Y6R) plays a crucial role in controlling energy balance through central mechanisms. However, P2Y6R’s roles in peripheral tissues regulating energy and glucose homeostasis remain unexplored. Here, we report the surprising finding that adipocyte-specific deletion of P2Y6R protects mice from diet-induced obesity, improving glucose tolerance and insulin sensitivity with reduced systemic inflammation. These changes were associated with reduced JNK signaling and enhanced expression and activity of PPARα affecting downstream PGC1α levels leading to beiging of white fat. In contrast, P2Y6R deletion in skeletal muscle reduced glucose uptake, resulting in impaired glucose homeostasis. Interestingly, whole body P2Y6R knockout mice showed metabolic improvements similar to those observed with mice lacking P2Y6R only in adipocytes. Our findings provide compelling evidence that P2Y6R antagonists may prove useful for the treatment of obesity and type 2 diabetes.


2020 ◽  
Author(s):  
Shanu Jain ◽  
Sai P. Pydi ◽  
Kiran S. Toti ◽  
Bernard Robaye ◽  
Marco Idzko ◽  
...  

ABSTRACTUridine diphosphate (UDP)-activated purinergic receptor P2Y6 (P2Y6R) plays a crucial role in controlling energy balance through central mechanisms. However, P2Y6R’s roles in peripheral tissues regulating energy and glucose homeostasis remain unexplored. Here, we report the surprising novel finding that adipocyte-specific deletion of P2Y6R protects mice from diet-induced obesity, improving glucose tolerance and insulin sensitivity with reduced systemic inflammation. These changes were associated with reduced JNK signaling, and enhanced expression and activity of PPARα affecting downstream PGC1α levels leading to beiging of white fat. In contrast, P2Y6R deletion in skeletal muscle reduced glucose uptake resulting in impaired glucose homeostasis. Interestingly, whole body P2Y6R KO mice showed metabolic improvements similar to those observed with mice lacking P2Y6R only in adipocytes. Our findings provide compelling evidence that P2Y6R antagonists may prove useful for the treatment of obesity and type 2 diabetes.


Author(s):  
Laís Vales Mennitti ◽  
Asha A. M. Carpenter ◽  
Elena Loche ◽  
Lucas C. Pantaleão ◽  
Denise S. Fernandez-Twinn ◽  
...  

Abstract Objective This study investigated the effect of maternal obesity on aged-male offspring liver phenotype and hepatic expression of a programmed miRNA. Methods A mouse model (C57BL/6 J) of maternal diet-induced obesity was used to investigate fasting-serum metabolites, hepatic lipid content, steatosis, and relative mRNA levels (RT-PCR) and protein expression (Western blotting) of key components involved in hepatic and mitochondrial metabolism in 12-month-old offspring. We also measured hepatic lipid peroxidation, mitochondrial content, fibrosis stage, and apoptosis in the offspring. To investigate potential mechanisms leading to the observed phenotype, we also measured the expression of miR-582 (a miRNA previously implicated in liver cirrhosis) in 8-week-old and 12-month-old offspring. Results Body weight and composition was similar between 8-week-old offspring, however, 12-month-old offspring from obese mothers had increased body weight and fat mass (19.5 ± 0.8 g versus 10.4 ± 0.9 g, p < 0.001), as well as elevated serum levels of LDL and leptin and hepatic lipid content (21.4 ± 2.1 g versus 12.9 ± 1.8 g, p < 0.01). This was accompanied by steatosis, increased Bax/Bcl-2 ratio, and overexpression of p-SAPK/JNK, Tgfβ1, Map3k14, and Col1a1 in the liver. Decreased levels of Bcl-2, p-AMPKα, total AMPKα and mitochondrial complexes were also observed. Maternal obesity was associated with increased hepatic miR-582-3p (p < 0.001) and miR-582-5p (p < 0.05). Age was also associated with an increase in both miR-582-3p and miR-582-5p, however, this was more pronounced in the offspring of obese dams, such that differences were greater in 12-month-old animals (−3p: 7.34 ± 1.35 versus 1.39 ± 0.50, p < 0.0001 and −5p: 4.66 ± 1.16 versus 1.63 ± 0.65, p < 0.05). Conclusion Our findings demonstrate that maternal diet-induced obesity has detrimental effects on offspring body composition as well as hepatic phenotype that may be indicative of accelerated-ageing phenotype. These whole-body and cellular phenotypes were associated with age-dependent changes in expression of miRNA-582 that might contribute mechanistically to the development of metabolic disorders in the older progeny.


2021 ◽  
Vol 22 (19) ◽  
pp. 10888
Author(s):  
Ho Am Jang ◽  
Bharat Bhusan Patnaik ◽  
Maryam Ali Mohammadie Kojour ◽  
Bo Bae Kim ◽  
Young Min Bae ◽  
...  

The cystine knot protein Spätzle is a Toll receptor ligand that modulates the intracellular signaling cascade involved in the nuclear factor kappa B (NF-κB)-mediated regulation of antimicrobial peptide (AMP)-encoding genes. Spätzle-mediated activation of the Toll pathway is critical for the innate immune responses of insects against Gram-positive bacteria and fungi. In this study, the open reading frame (ORF) sequence of Spätzle-like from T. molitor (TmSpz-like) identified from the RNA sequencing dataset was cloned and sequenced. The 885-bp TmSpz-like ORF encoded a polypeptide of 294 amino acid residues. TmSpz-like comprised a cystine knot domain with six conserved cysteine residues that formed three disulfide bonds. Additionally, TmSpz-like exhibited the highest amino acid sequence similarity with T. castaneum Spätzle (TcSpz). In the phylogenetic tree, TmSpz-like and TcSpz were located within a single cluster. The expression of TmSpz-like was upregulated in the Malpighian tubules and gut tissues of T. molitor. Additionally, the expression of TmSpz-like in the whole body and gut of the larvae was upregulated at 24 h post-E. coli infection. The results of RNA interference experiments revealed that TmSpz-like is critical for the viability of E. coli-infected T. molitor larvae. Eleven AMP-encoding genes were downregulated in the E. coli-infected TmSpz-like knockdown larvae, which suggested that TmSpz-like positively regulated these genes. Additionally, the NF-κB-encoding genes (TmDorX1, TmDorX2, and TmRelish) were downregulated in the E. coli-infected TmSpz-like knockdown larvae. Thus, TmSpz-like plays a critical role in the regulation of AMP production in T. molitor in response to E. coli infection.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 499
Author(s):  
Kalpana D. Acharya ◽  
Hye L. Noh ◽  
Madeline E. Graham ◽  
Sujin Suk ◽  
Randall H. Friedline ◽  
...  

A decrease in ovarian estrogens in postmenopausal women increases the risk of weight gain, cardiovascular disease, type 2 diabetes, and chronic inflammation. While it is known that gut microbiota regulates energy homeostasis, it is unclear if gut microbiota is associated with estradiol regulation of metabolism. In this study, we tested if estradiol-mediated protection from high-fat diet (HFD)-induced obesity and metabolic changes are associated with longitudinal alterations in gut microbiota in female mice. Ovariectomized adult mice with vehicle or estradiol (E2) implants were fed chow for two weeks and HFD for four weeks. As reported previously, E2 increased energy expenditure, physical activity, insulin sensitivity, and whole-body glucose turnover. Interestingly, E2 decreased the tight junction protein occludin, suggesting E2 affects gut epithelial integrity. Moreover, E2 increased Akkermansia and decreased Erysipleotrichaceae and Streptococcaceae. Furthermore, Coprobacillus and Lactococcus were positively correlated, while Akkermansia was negatively correlated, with body weight and fat mass. These results suggest that changes in gut epithelial barrier and specific gut microbiota contribute to E2-mediated protection against diet-induced obesity and metabolic dysregulation. These findings provide support for the gut microbiota as a therapeutic target for treating estrogen-dependent metabolic disorders in women.


2021 ◽  
Vol 22 (9) ◽  
pp. 4370
Author(s):  
Cássia de Fáveri ◽  
Paula M. Poeta Fermino ◽  
Anna P. Piovezan ◽  
Lia K. Volpato

The pathogenesis of endometriosis is still controversial, although it is known that the inflammatory immune response plays a critical role in this process. The resolution of inflammation is an active process where the activation of endogenous factors allows the host tissue to maintain homeostasis. The mechanisms by which pro-resolving mediators (PRM) act in endometriosis are still little explored. Thus, this integrative review aims to synthesize the available content regarding the role of PRM in endometriosis. Experimental and in vitro studies with Lipoxin A4 demonstrate a potential inhibitory effect on endometrial lesions’ progression, attenuating pro-inflammatory and angiogenic signals, inhibiting proliferative and invasive action suppressing intracellular signaling induced by cytokines and estradiol, mainly through the FPR2/ALX. Investigations with Resolvin D1 demonstrated the inhibition of endometrial lesions and decreased pro-inflammatory factors. Annexin A1 is expressed in the endometrium and is specifically present in women with endometriosis, although the available studies are still inconsistent. Thus, we believe there is a gap in knowledge regarding the PRM pathways in patients with endometriosis. It is important to note that these substances’ therapeutic potential is evident since the immune and abnormal inflammatory responses play an essential role in endometriosis development and progression.


2011 ◽  
Vol 108 (6) ◽  
pp. 1025-1033 ◽  
Author(s):  
Sumithra Urs ◽  
Terry Henderson ◽  
Phuong Le ◽  
Clifford J. Rosen ◽  
Lucy Liaw

We recently characterised Sprouty1 (Spry1), a growth factor signalling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue-specific Spry1 expression in mice resulted in increased bone mass and reduced body fat, while conditional knockout of Spry1 had the opposite effect with decreased bone mass and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high-fat diet-induced obesity, bone loss and associated lipid abnormalities, and demonstrate that Spry1 has a long-term protective effect on mice fed a high-energy diet. We studied diet-induced obesity in mice with fatty acid binding promoter-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole-body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1-null mice, a high-fat diet increased body fat by 40 %, impaired glucose regulation and led to liver steatosis. However, overexpression of Spry1 led to 35 % (P < 0·05) lower body fat, reduced bone loss and normal metabolic function compared with single transgenics. This protective phenotype was associated with decreased circulating insulin (70 %) and leptin (54 %; P < 0·005) compared with controls on a high-fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45 %. We show that conditional Spry1 expression in adipose tissue protects against high-fat diet-induced obesity and associated bone loss.


1993 ◽  
Vol 105 (1) ◽  
pp. 191-201 ◽  
Author(s):  
L. Thomas ◽  
P.W. Chan ◽  
S. Chang ◽  
C. Damsky

Cell interactions with the extracellular matrix play a critical role in regulating complex processes such as terminal differentiation and tumor progression. In these studies we describe a melanoma cell system that should be useful in addressing the regulation of cell-matrix interactions and the roles they play in regulating differentiation and cell invasiveness. CS (suspension)-1 melanoma cells are relatively well differentiated: they are melanotic, responsive to melanocyte-stimulating hormone, and express TA99, a melanosome membrane differentiation marker. Their repertoire of integrin receptors for extracellular matrix ligands is limited; in particular, they lack receptors for vitronectin, accounting for the observation that they are nonadherent when cultured in the presence of serum. CS-1 cells are noninvasive as well, and express low levels of both metalloproteinases and activated plasminogen activators. Treatment of these cells with melanocyte-stimulating hormone causes them to increase melanin production and assume an arborized phenotype, suggesting that it promotes their further differentiation. In contrast, treatment of CS-1 with the thymidine analog 5-bromodeoxyuridine, converts them to a highly invasive cell population (termed BCS-1) that loses its differentiated properties and responsiveness to melanocyte-stimulating hormone, acquires a broad integrin repertoire (including vitronectin receptors), and expresses elevated levels of metalloproteinases and activated urokinase. From these observations and findings of others on BrdU treatment of other developmental lineages, we hypothesize that BrdU both suppresses differentiation and promotes invasiveness of CS-1 cells. The demonstrated manipulability of CS-1 cells should make them extremely useful for studying the regulation of both terminal differentiation and tumor progression in the melanocyte lineage.


Sign in / Sign up

Export Citation Format

Share Document