scholarly journals Footprint of greenhouse forcing in daily temperature variability

2021 ◽  
Vol 118 (32) ◽  
pp. e2103294118
Author(s):  
Maximilian Kotz ◽  
Leonie Wenz ◽  
Anders Levermann

Changes in mean climatic conditions will affect natural and societal systems profoundly under continued anthropogenic global warming. Changes in the high-frequency variability of temperature exert additional pressures, yet the effect of greenhouse forcing thereon has not been fully assessed or identified in observational data. Here, we show that the intramonthly variability of daily surface temperature changes with distinct global patterns as greenhouse gas concentrations rise. In both reanalyses of historical observations and state-of-the-art projections, variability increases at low to mid latitudes and decreases at northern mid to high latitudes with enhanced greenhouse forcing. These latitudinally polarized daily variability changes are identified from internal climate variability using a recently developed signal-to-noise-maximizing pattern-filtering technique. Analysis of a multimodel ensemble from the Coupled Model Intercomparison Project Phase 6 shows that these changes are attributable to enhanced greenhouse forcing. By the end of the century under a business-as-usual emissions scenario, daily temperature variability would continue to increase by up to a further 100% at low latitudes and decrease by 40% at northern high latitudes. Alternative scenarios demonstrate that these changes would be limited by mitigation of greenhouse gases. Moreover, global changes in daily variability exhibit strong covariation with warming across climate models, suggesting that the equilibrium climate sensitivity will also play a role in determining the extent of future variability changes. This global response of the high-frequency climate system to enhanced greenhouse forcing is likely to have strong and unequal effects on societies, economies, and ecosystems if mitigation and protection measures are not taken.

2015 ◽  
Vol 28 (15) ◽  
pp. 5908-5921 ◽  
Author(s):  
Cheng Qian ◽  
Xuebin Zhang

Abstract The annual cycle is the largest variability for many climate variables outside the tropics. Whether human activities have affected the annual cycle at the regional scale is unclear. In this study, long-term changes in the amplitude of surface air temperature annual cycle in the observations are compared with those simulated by the climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Different spatial domains ranging from hemispheric to subcontinental scales in mid- to high-latitude land areas for the period 1950–2005 are considered. Both the optimal fingerprinting and a nonoptimal detection and attribution technique are used. The results show that the space–time pattern of model-simulated responses to the combined effect of anthropogenic and natural forcings is consistent with the observed changes. In particular, models capture not only the decrease in the temperature seasonality in the northern high latitudes and East Asia, but also the increase in the Mediterranean region. A human influence on the weakening in the temperature seasonality in the Northern Hemisphere is detected, particularly in the high latitudes (50°–70°N) where the influence of the anthropogenic forcing can be separated from that of the natural forcing.


2016 ◽  
Vol 37 (2) ◽  
pp. 570-582 ◽  
Author(s):  
Fu-Ting Wu ◽  
Congbin Fu ◽  
Yun Qian ◽  
Yang Gao ◽  
Shu-Yu Wang

2020 ◽  
pp. 1-44
Author(s):  
Aiguo Dai ◽  
Jiechun Deng

AbstractArctic amplification (AA) reduces meridional temperature gradients (dT/dy) over the northern mid-high latitudes, which may weaken westerly winds. It is suggested that this may lead to wavier and more extreme weather in midlatitudes. However, temperature variability is shown to decrease over northern mid-high latitudes under increasing greenhouse gases due to reduced dT/dy. Here, through analyses of coupled model simulations and ERA5 reanalysis, it is shown that consistent with previous studies cold-season surface and lower-mid tropospheric temperature (T) variability decreases over northern mid-high latitudes even in simulations with suppressed AA and sea-ice loss under increasing CO2; however, AA and sea-ice loss further reduce the T variability greatly, leading to a narrower probability distribution and weaker cold or warm extreme events relative to future mean climate. Increased CO2 strengthens meridional wind (v) with a wavenumer-4 pattern but weakens meridional thermal advection (-v dT/dy) over most northern mid-high latitudes, and AA weakens the climatological v and (-v dT/dy). The weakened thermal advection and its decreased variance are the primary cause of the T variability decrease, which is enlarged by a positive feedback between the variability of T and (-v dT/dy). AA not only reduces dT/dy, but also its variance, which further decreases T variability through (-v dT/dy). While the mean snow and ice cover decreases, its variability increases over many northern latitudes, and these changes do not weaken the T variability. Thus, AA’s influence on midlatitude temperature variability comes mainly from its impact on thermal advection, rather than on winds as previously thought.


2019 ◽  
Vol 32 (20) ◽  
pp. 6875-6898 ◽  
Author(s):  
Megan E. Jones ◽  
David H. Bromwich ◽  
Julien P. Nicolas ◽  
Jorge Carrasco ◽  
Eva Plavcová ◽  
...  

Abstract Temperature trends across Antarctica over the last few decades reveal strong and statistically significant warming in West Antarctica and the Antarctic Peninsula (AP) contrasting with no significant change overall in East Antarctica. However, recent studies have documented cooling in the AP since the late 1990s. This study aims to place temperature changes in the AP and West Antarctica into a larger spatial and temporal perspective by analyzing monthly station-based surface temperature observations since 1957 across the extratropical Southern Hemisphere, along with sea surface temperature (SST) data and mean sea level pressure reanalysis data. The results confirm statistically significant cooling in station observations and SST trends throughout the AP region since 1999. However, the full 60-yr period shows statistically significant, widespread warming across most of the Southern Hemisphere middle and high latitudes. Positive SST trends broadly reflect these warming trends, especially in the midlatitudes. After confirming the importance of the southern annular mode (SAM) on southern high-latitude climate variability, the influence is removed from the station temperature records, revealing statistically significant background warming across all of the extratropical Southern Hemisphere. Antarctic temperature trends in a suite of climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are then investigated. Consistent with previous work the CMIP5 models warm Antarctica at the background temperature rate that is 2 times faster than that observed. However, removing the SAM influence from both CMIP5 and observed temperatures results in Antarctic trends that differ only modestly, perhaps due to natural multidecadal variability remaining in the observations.


2019 ◽  
Vol 6 (1) ◽  
pp. 55-73
Author(s):  
Linda Sylvester ◽  
Olufemi A. Omitaomu ◽  
Esther S. Parish ◽  
Budhendra L. Bhaduri

Background: Green Infrastructure (GI) is widely being promoted as an adaptation strategy for urban flooding. Like urban flooding, tree species could be impacted by future climatic conditions. However, there have been limited studies on the implications of future climate on GI planning, mostly due to the lack of climate data at higher spatial resolutions. Objective: In this paper, we analyze the implications of climate projections on heat hardiness zones since this could impact the GI landscape in the coming years. This is an extension of our earlier work on evaluating impacts of climate projections on plant hardiness zones. </P><P> Method: Using downscaled daily temperature data from ten Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models for the historical (1980 - 2005) and projected (2025 - 2050) periods, we analyzed future heat hardiness zones in the watershed bounding Knox County, TN. We analyzed the implications of these outputs for the current list of suggested native and non-native tree species selected for GI in the study area. Results: All the models suggest that a considerable part of the study area will move into the next warmer heat zone. While most trees remain suitable for GI, several are at the limit of their ideal heat zones. Conclusion: The insights from this study will help guide the selection and placement of GI across the study area. Specifically, it should help green infrastructure planners design better mitigation and adaptation strategies to achieve higher returns on investments as more cities are now investing in GI projects.


2019 ◽  
Vol 147 (5) ◽  
pp. 1429-1445 ◽  
Author(s):  
Yuchu Zhao ◽  
Zhengyu Liu ◽  
Fei Zheng ◽  
Yishuai Jin

Abstract We performed parameter estimation in the Zebiak–Cane model for the real-world scenario using the approach of ensemble Kalman filter (EnKF) data assimilation and the observational data of sea surface temperature and wind stress analyses. With real-world data assimilation in the coupled model, our study shows that model parameters converge toward stable values. Furthermore, the new parameters improve the real-world ENSO prediction skill, with the skill improved most by the parameter of the highest climate sensitivity (gam2), which controls the strength of anomalous upwelling advection term in the SST equation. The improved prediction skill is found to be contributed mainly by the improvement in the model dynamics, and second by the improvement in the initial field. Finally, geographic-dependent parameter optimization further improves the prediction skill across all the regions. Our study suggests that parameter optimization using ensemble data assimilation may provide an effective strategy to improve climate models and their real-world climate predictions in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lennart Quante ◽  
Sven N. Willner ◽  
Robin Middelanis ◽  
Anders Levermann

AbstractDue to climate change the frequency and character of precipitation are changing as the hydrological cycle intensifies. With regards to snowfall, global warming has two opposing influences; increasing humidity enables intense snowfall, whereas higher temperatures decrease the likelihood of snowfall. Here we show an intensification of extreme snowfall across large areas of the Northern Hemisphere under future warming. This is robust across an ensemble of global climate models when they are bias-corrected with observational data. While mean daily snowfall decreases, both the 99th and the 99.9th percentiles of daily snowfall increase in many regions in the next decades, especially for Northern America and Asia. Additionally, the average intensity of snowfall events exceeding these percentiles as experienced historically increases in many regions. This is likely to pose a challenge to municipalities in mid to high latitudes. Overall, extreme snowfall events are likely to become an increasingly important impact of climate change in the next decades, even if they will become rarer, but not necessarily less intense, in the second half of the century.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
David Docquier ◽  
Torben Koenigk

AbstractArctic sea ice has been retreating at an accelerating pace over the past decades. Model projections show that the Arctic Ocean could be almost ice free in summer by the middle of this century. However, the uncertainties related to these projections are relatively large. Here we use 33 global climate models from the Coupled Model Intercomparison Project 6 (CMIP6) and select models that best capture the observed Arctic sea-ice area and volume and northward ocean heat transport to refine model projections of Arctic sea ice. This model selection leads to lower Arctic sea-ice area and volume relative to the multi-model mean without model selection and summer ice-free conditions could occur as early as around 2035. These results highlight a potential underestimation of future Arctic sea-ice loss when including all CMIP6 models.


2021 ◽  
Vol 11 (5) ◽  
pp. 2403
Author(s):  
Daniel Ziche ◽  
Winfried Riek ◽  
Alexander Russ ◽  
Rainer Hentschel ◽  
Jan Martin

To develop measures to reduce the vulnerability of forests to drought, it is necessary to estimate specific water balances in sites and to estimate their development with climate change scenarios. We quantified the water balance of seven forest monitoring sites in northeast Germany for the historical time period 1961–2019, and for climate change projections for the time period 2010–2100. We used the LWF-BROOK90 hydrological model forced with historical data, and bias-adjusted data from two models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) downscaled with regional climate models under the representative concentration pathways (RCPs) 2.6 and 8.5. Site-specific monitoring data were used to give a realistic model input and to calibrate and validate the model. The results revealed significant trends (evapotranspiration, dry days (actual/potential transpiration < 0.7)) toward drier conditions within the historical time period and demonstrate the extreme conditions of 2018 and 2019. Under RCP8.5, both models simulate an increase in evapotranspiration and dry days. The response of precipitation to climate change is ambiguous, with increasing precipitation with one model. Under RCP2.6, both models do not reveal an increase in drought in 2071–2100 compared to 1990–2019. The current temperature increase fits RCP8.5 simulations, suggesting that this scenario is more realistic than RCP2.6.


Sign in / Sign up

Export Citation Format

Share Document