Effect of Curing Agent on Sodium Alginate Blends Using Barium Chloride as Crosslinking Agent and Study of Swelling, Thermal, and Morphological Properties

2013 ◽  
Vol 62 (14) ◽  
pp. 743-748 ◽  
Author(s):  
Reddy S. Giridhar ◽  
Akanksha Saxena Pandit
Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2381
Author(s):  
Katarzyna Bialik-Wąs ◽  
Ewelina Królicka ◽  
Dagmara Malina

Here, we report on studies on the influence of different crosslinking methods (ionic and chemical) on the physicochemical (swelling ability and degradation in simulated body fluids), structural (FT-IR spectra analysis) and morphological (SEM analysis) properties of SA/PVA hydrogels containing active substances of natural origin. First, an aqueous extract of Echinacea purpurea was prepared using a Soxhlet apparatus. Next, a series of modified SA/PVA-based hydrogels were obtained through the chemical crosslinking method using poly(ethylene glycol) diacrylate (PEGDA, Mn = 700 g/mol) as a crosslinking agent and, additionally, the ionic reaction in the presence of a 5% w/v calcium chloride solution. The compositions of SA/PVA/E. purpurea-based hydrogels contained a polymer of natural origin—sodium alginate (SA, 1.5% solution)—and a synthetic polymer—poly(vinyl alcohol) (PVA, Mn = 72,000 g/mol, 10% solution)—in the ratio 2:1, and different amounts of the aqueous extract of E. purpurea—5, 10, 15 or 20% (v/v). Additionally, the release behavior of echinacoside from the polymeric matrix was evaluated in phosphate-buffered saline (PBS) at 37 °C. The results indicate that the type of the crosslinking method has a direct impact on the release profile. Consequently, it is possible to design a system that delivers an active substance in a way that depends on the application.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2096
Author(s):  
Wenting Lan ◽  
Siying Li ◽  
Shiti Shama ◽  
Yuqing Zhao ◽  
Dur E. Sameen ◽  
...  

An antibacterial and anti-oxidation composite film was prepared by a casting method using sodium alginate (SA) and apple polyphenols (APPs) as the base material and glycerol as the plasticizer. Silver nanoparticles (AgNPs) were deposited by ultrasonic-assisted electrospray method. The degree of influence of the addition ratio of SA and AgNPs and different ultrasonic time on the mechanical properties, barrier properties, optical properties, and hydrophilicity of the composite film was explored. The composite films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the SA: AgNPs ratio of 7:3 and the ultrasonic time for 30 min have the best comprehensive performance, and SA/AgNPs/APP films showed the lowest water vapor permeability value of 0.75 × 10−11 g/m·s·Pa. The composite film has good strength and softness, with tensile strength (TS) and elongation at break (E) at 23.94 MPa and 29.18%, respectively. SEM images showed that the surface of the composite film was smooth and the AgNPs’ distribution was uniform. The composite film showed broad antibacterial activity, and the antibacterial activity of Escherichia coli (92.01%) was higher than that of Staphylococcus aureus (91.26%). However, due to the addition of APP, its antioxidant activity can reach 98.39%, which has a synergistic effect on antibacterial activity. For strawberry as a model, the results showed that this composite film can prolong the shelf life of strawberries for about 8 days at 4 °C, effectively maintaining their storage quality. Compared with the commonly used PE(Polyethylene film) film on the market, it has a greater fresh-keeping effect and can be used as an active food packaging material.


Author(s):  
P M Jamkar ◽  
K N Gujar ◽  
S B Nemmaniwar ◽  
N B Kulkarni

Controlled drug release system is one of the most favourable technique of novel drug delivery system owing to its reproducibility and ease of formulation. Nanotechnology is very useful for controlling the drug release and thus improving the pharmacokinetic and pharmacodynamic properties of the drug. The technique improves patient compliance by reducing both dose and the frequency of administration and thus minimizing the local as well as systemic toxic effects. The aim of the present research work was to formulate and evaluate gastroretentive nanoparticles of Repaglinide, an anti-diabetic drug by using the ionotropic gelation method. Repaglinide has a very short half-life of 1 hour with bioavailability 56%. Sustained release mucoadhesive nanoparticles of Repaglinide were prepared to increase the drug residence time in gastrointestinal tract and thus improving the bioavailability of drug. The mucoadhesive nanoparticles were prepared by using chitosan and sodium alginate as polymers; calcium chloride as the crosslinking agent. Different formulations were prepared with varying concentrations of chitosan and sodium alginate in order to achieve the optimum particle size and maximum encapsulation efficiency. The particle size of nanoparticles was found to be in the range of 300 nm to 756 nm. Drug encapsulation efficiency ranged between 56% to 80% with controlled drug release upto 88% in phosphate buffer pH 7.4 and 75% drug release in 0.1N HCl in 12 hrs. FT-IR and DSC studies showed that the drug and polymers were compatible. The results of swelling study and bioadhesive strength indicated that optimized formulation exhibited excellent mucoadhesive properties


2016 ◽  
Vol 718 ◽  
pp. 62-66 ◽  
Author(s):  
Pongsatorn Taweetanawanit ◽  
Thana Radpukdee ◽  
Nguyen Thanh Giao ◽  
Sumana Siripattanakul-Ratpukdi

There has been increasing interest of alginate gel utilization for environmental application. This study was aimed to investigate influence of sodium alginate and barium chloride concentrations on mechanical and chemical stabilities of the barium alginate gel. The barium alginate beads were mechanically tested using universal testing machine while the beads were soaked in the solutions with pHs of 5 to 9 or salts (sodium chloride, potassium chloride, and sodium hydrogen carbonate) for chemical stability test. The result showed that concentrations of barium chloride and sodium alginate obviously affected mechanical and chemical stabilities. Higher barium chloride concentrations decreased stress and Young’s modulus of beads whereas higher alginate concentrations resulted to higher gel strength and flexibility. The stress and Young’s modulus of 0.57 and 37.71 MPa were found in the best preparation condition (barium chloride of 1% and sodium alginate of 5%). For the chemical tests, the gel beads mostly tolerated in the solutions with different pHs and salt solutions excluding NaHCO3. The gel beads prepared in this work sound potential for practice.


2014 ◽  
Vol 1040 ◽  
pp. 347-350 ◽  
Author(s):  
Anna Nikolaevna Grishina ◽  
Evgeniy Valerjevich Korolev ◽  
Anton Borisovich Satyukov

One of the promising directions of quality improvement of building materials (based on various binders) is to use hydrosilicates of calcium and barium. In particular, it is known that the application of calcium hydrosilicates can improve the compression strength in two or three times; the fracture toughness can be increased in two times and more. Prospects of using barium hydrosilicates in cement systems are due to the similarity of the chemical composition (with calcium hydrosilicates) and advantages of barium cements compared to traditional cements. It is advisable to synthesize the barium hydrosilicates by means of low-temperature technology. To investigate the influence of the curing agent (barium chloride) to the properties of the reaction products in the present study the IR spectroscopy and differential scanning calorimetry (DSC) are used. Analysis of the results allowed to state that the main reaction product is a crystalline silicate phase. Reducing the amount of curing agent leads to an increase of the content of silicic acid. DSC results show that dehydration of barium hydrosilicates takes place in two stages. It is typical for systems BaO•SiO2•6H2O. Increasing the content of silicic acid is accompanied by an endothermic effect in temperature range of 120...130 °C. Joint analysis of the results of IR spectroscopy and DSC leads to the conclusion that there is a reaction of barium carbonate and silicic acid. In general case, reduction of the amount of the curing agent contributes to increase of content of the silica acid and barium carbonate. Therefore, it is advisable to use compositions prepared with reduced amount of BaCl2 in systems capable of interacting with the silica acid and forming the insoluble products.


2012 ◽  
Vol 184-185 ◽  
pp. 1025-1029
Author(s):  
Nan Xing ◽  
Yu Kun Li ◽  
Meng Su Li ◽  
Feng Tian

Hydrogel beads with different diameters were prepared by double coacervation method of alginate with CaCl2 followed by complexation between alginate and chitosan. The main purpose of this study was to evaluate the morphological properties of beads under different conditions and prepared by different drying methods, which would have a major effect on the other characters and applications of beads. The results show that the beads can be manufactured with the control of concentrations of the two polymers and diameter of the syringe needle. Different drying methods can affect the morphological properties of the beads.


2013 ◽  
Vol 781-784 ◽  
pp. 2142-2145
Author(s):  
Wen Juan Fan ◽  
Hong Xiang Ge ◽  
Yu Pang ◽  
Hui Chang

The different ratios (PVA and SA) of PVA/SA blend films with cross-linking structure are successfully prepared by coagulating the mixture of sodium alginate (SA) and polyvinyl alcohol (PVA) in aqueous solution, then by treating with crosslinking agent CaCl2solution. The Surface morphology and flexibility of PVA/SA blend films were studied. The results indicate there is some strong interaction and good compatibility between sodium alginate and polyvinyl alcohol molecular. The physical and chemical properties of the PSA-80(PVA:SA=4:1) blend films are obviously improved owing to a molecular force and hydrogen bond interaction. The effects of parameters of the blend film was investigated in relation to its adsorption capability for low concentration ions Cr (VI) including such as SA content of the PVA/SA film, contact time, solution pH and temperature of solution. The results indicate that the maximum adsorption rate is 95.86% at the temperature 50°C under optimized pH 4 for 60min by PSA-80 films.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 304 ◽  
Author(s):  
Jagoda Kurowiak ◽  
Agnieszka Kaczmarek-Pawelska ◽  
Agnieszka G. Mackiewicz ◽  
Romuald Bedzinski

Hydrogels from natural polymers such as sodium alginate have great potential in regenerative medicine because of their biocompatibility, biodegradability, mechanical properties, bioresorption ability, and relatively low cost. Sodium alginate, a polysaccharide derived from brown seaweed, is the most widely investigated and used biomaterial in biomedical applications. Alginate dressings are also useful as a delivery platform in order to provide a controlled release of therapeutic substances (e.g., pain-relieving, antibacterial, and anti-inflammatory agents). In our work, we aimed to analyze process of degradation of alginate hydrogels. We also describe an original hybrid crosslinking process by using not one, as usual, but a mixture of two crosslinking agents (calcium chloride and barium chloride). We proved that different crosslinking agents allow producing hydrogels with a spectrum of mechanical properties, similar to the urethra tissue. Hydrogels were formed using a dip-coating technique, and then examined by mechanical testing, FTIR (Fourier-Transform Infrared Spectroscopy), and resorption on artificial urine. Obtained hydrogels have a different degradation rate in artificial urine, and they can be used as a material for healing of urethra injuries, especially urethra strictures, which significantly affect the quality of life of patients.


2008 ◽  
Vol 109 (6) ◽  
pp. 4075-4081 ◽  
Author(s):  
Siddaramaiah ◽  
T. M. Mruthyunjaya Swamy ◽  
B. Ramaraj ◽  
Joong Hee Lee

Sign in / Sign up

Export Citation Format

Share Document