The role of clay minerals and humic substances on the behaviour of organic and inorganic compounds in fresh water

1981 ◽  
Vol 21 (1) ◽  
pp. 545-549
Author(s):  
Kazuko Ogura ◽  
Kohji Yamamoto ◽  
Yasushi Naitoh ◽  
Kazuo Fukushima
Author(s):  
L. V. Lukovnikova ◽  
G. I. Sidorin ◽  
L. A. Alikbaeva ◽  
A. V. Galochina

When examining the population exposed to organic and inorganic compounds of mercury, a comprehensive approach is proposed, including chemical monitoring of environmental objects, biological monitoring, clinical examination of persons exposed to mercury, identification of high-risk groups.


2022 ◽  
Vol 9 ◽  
Author(s):  
Adriana M. Navarro-Suárez ◽  
Milo S. P. Shaffer

Structural energy storage devices (SESDs), designed to simultaneously store electrical energy and withstand mechanical loads, offer great potential to reduce the overall system weight in applications such as automotive, aircraft, spacecraft, marine and sports equipment. The greatest improvements will come from systems that implement true multifunctional materials as fully as possible. The realization of electrochemical SESDs therefore requires the identification and development of suitable multifunctional structural electrodes, separators, and electrolytes. Different strategies are available depending on the class of electrochemical energy storage device and the specific chemistries selected. Here, we review existing attempts to build SESDs around carbon fiber (CF) composite electrodes, including the use of both organic and inorganic compounds to increase electrochemical performance. We consider some of the key challenges and discuss the implications for the selection of device chemistries.


2021 ◽  
Vol 7 (11) ◽  
pp. 968
Author(s):  
Hossein Masigol ◽  
Jason Nicholas Woodhouse ◽  
Pieter van West ◽  
Reza Mostowfizadeh-Ghalamfarsa ◽  
Keilor Rojas-Jimenez ◽  
...  

The contribution of fungi to the degradation of plant litter and transformation of dissolved organic matter (humic substances, in particular) in freshwater ecosystems has received increasing attention recently. However, the role of Saprolegniales as one of the most common eukaryotic organisms is rarely studied. In this study, we isolated and phylogenetically placed 51 fungal and 62 Saprolegniales strains from 12 German lakes. We studied the cellulo-, lignino-, and chitinolytic activity of the strains using plate assays. Furthermore, we determined the capacity of 10 selected strains to utilize 95 different labile compounds, using Biolog FF MicroPlates™. Finally, the ability of three selected strains to utilize maltose and degrade/produce humic substances was measured. Cladosporium and Penicillium were amongst the most prevalent fungal strains, while Saprolegnia, Achlya, and Leptolegnia were the most frequent Saprolegniales strains. Although the isolated strains assigned to genera were phylogenetically similar, their enzymatic activity and physiological profiling were quite diverse. Our results indicate that Saprolegniales, in contrast to fungi, lack ligninolytic activity and are not involved in the production/transformation of humic substances. We hypothesize that Saprolegniales and fungi might have complementary roles in interacting with dissolved organic matter, which has ecological implications for carbon cycling in freshwater ecosystems.


2020 ◽  
Vol 20 (7) ◽  
pp. 2564-2576
Author(s):  
Hongxi Peng ◽  
Ya Zhang ◽  
Ruowei Wang ◽  
Jingqing Liu ◽  
Wen-Tso Liu

Abstract Stagnation occurs in building water supplies when there is little or no water usage. As a result, the number of bacteria increase, and this often leads to the deterioration of water quality. Still, the role of biofilm in stagnation remains unclear. This study used shower hoses as the model system and investigated the contribution of biofilm and microbes in fresh water to the bacterial growth in water under different stagnation times from 6 to 24 h. Bacterial counts in water were observed to increase significantly after 12 h stagnation but longer stagnation did not lead to further increase, indicating different mechanisms contributing to bacterial growth during stagnation. 16S rRNA gene sequencing and Sourcetracker2 further confirmed that the contribution of fresh water to the microbial core community did not increase significantly with stagnation time, whereas the contribution of biofilm increased significantly after 24 h stagnation (53.5%) compared with 6 h stagnation (11.2%) (p < 0.05). The present results differentiated the contribution between planktonic and biofilm phase to the bacterial growth during stagnation, and provided insights into its mechanism. These findings serve as a framework for future development of strategies to manage biological water quality at the distal end of the building water supplies.


Sign in / Sign up

Export Citation Format

Share Document