scholarly journals Cytokines in inflammatory bowel disease

1997 ◽  
Vol 6 (2) ◽  
pp. 95-103 ◽  
Author(s):  
P. L. Beck ◽  
J. L. Wallace

Over the past decade, much has been learned regarding the role of various cytokines in the pathogenesis of inflammatory bowel disease. Several cytokine ‘knockout’ models in mice have been shown to develop colitis, while alterations in the production of various cytokines has been documented in human Crohn's disease and ulcerative colitis. In recent years, attempts have been made to treat these diseases through modulation of cytokine production or action. This review focuses on the cytokines that have been implicated in the pathogenesis of inflammatory bowel disease. The evidence for and against a role for particular cytokines in intestinal inflammation is reviewed, as is the experimental and clinical data suggesting that cytokines are rational targets for the development of new therapies.

2021 ◽  
Vol 75 (1) ◽  
pp. 20-28
Author(s):  
Vladimír Teplan ◽  
Milan Lukáš

The incidence and prevalence of overweight and obesity has dramatically increased in the last decades and is generally considered to be global pandemics. The incidence of inflammatory bowel disease (IBD) is rising parallel with overweight and obesity. Contrary to a conventional believe, about 15–40% patients with IBD are obese, which can contribute to the development and course of IBD, especially in Crohn’s disease. Although the findings of some cohort studies are still conflicting, recent results indicate a special role of visceral adipose tissue and particularly mesenteric adipose tissue known as creeping fat, leading to intestinal inflammation. The involvement of altered adipocyte function and deregulated production of adipokines such as leptin and adiponectin has been suggested in the pathogenesis of IBD. The emerging role of Western diet and microbiota can also open new possibilities in IBD management. The effect of obesity on the IBD-related therapy remains to be studied. The finding that obesity results in suboptimal response to the therapy, potentially promoting rapid clearance of biologic agents and thus leading to their low concentrations, has a great importance. Obesity also makes IBD colorectal surgery technically challenging and might increase a risk of perioperative complications.


2015 ◽  
Vol 10 (4) ◽  
pp. 860
Author(s):  
Irfan Ahmad Rather ◽  
Vivek K. Bajpai ◽  
Nam Gyeong-Jun

<p>Animal model of intestinal inflammation is of paramount significance that aids in discerning the pathologies underlying ulcerative colitis and Crohn’s disease, the two clinical presentations of inflammatory bowel disease. The 2,4,6-trinitrobenzene sulfonic acid (TNBS) colitis model represents one such intestinal inflammation-prototype that is generated in susceptible strains of mice through intra-rectal instillation of compound TNBS. In this paper, we demonstrate the experimental induction of TNBS-mediated colitis in a susceptible strain of ICR mice. This can be done by the following steps: a) acclimation, b) induction and c) observation. TNBS-mouse model provides the information in shortest possible time and simultaneously represents a cost effective and highly reproducible model method of studying the pathogenesis of inflammatory bowel disease.</p><p><strong>Video Clips</strong></p><p><a href="https://youtube.com/v/6MsuIGzH3uA">Acclimation and induction of TNBS</a>:          4.5 min</p><p><a href="https://youtube.com/v/ya66SNwoVag">Observation and drug administration</a>:      1.5 min</p>


2005 ◽  
Vol 288 (2) ◽  
pp. G169-G174 ◽  
Author(s):  
Gert Van Assche ◽  
Paul Rutgeerts

Adhesion molecules regulate the influx of leukocytes in normal and inflamed gut. They are also involved in local lymphocyte stimulation and antigen presentation within the intestinal mucosa. In intestinal inflammation, many adhesion molecules are upregulated, but α4-integrins most likely hold a key position in directing leukocytes into the inflamed bowel wall. Therapeutic compounds directed against trafficking of leukocytes have been designed and are being developed as a novel class of drugs in the treatment of Crohn's disease and ulcerative colitis. This review deals with the immunological aspects of leukocyte trafficking focused on gut homing of T cells. Second, the changes in adhesion molecules and T cell trafficking during intestinal inflammation are discussed. Finally, we review the clinical data that have been gathered with respect to the therapeutic potential and the safety of antiadhesion molecule treatment. Antegren, or natalizumab, a humanized anti-α4 integrin IgG4 antibody, has been most extensively evaluated and may be close to registration. A more specific humanized α4β7-integrin MLN-02 has shown preliminary clinical efficacy in ulcerative colitis, and both antergren and MLN-02 appear to be very safe. Trials with the anti-ICAM-1 antisense oligonucleotide ISIS-2302 in steroid refractory Crohn's disease have provided conflicting efficacy data. In the near future, some of these novel biological agents may prove valuable therapeutic tools in the management of refractory inflammatory bowel disease, although it is too early to define the patient population that will benefit most from these agents.


2008 ◽  
Vol 105 (46) ◽  
pp. 17931-17936 ◽  
Author(s):  
Danyvid Olivares-Villagómez ◽  
Yanice V. Mendez-Fernandez ◽  
Vrajesh V. Parekh ◽  
Saif Lalani ◽  
Tiffaney L. Vincent ◽  
...  

Intestinal intraepithelial lymphocytes (IEL) bear a partially activated phenotype that permits them to rapidly respond to antigenic insults. However, this phenotype also implies that IEL must be highly controlled to prevent misdirected immune reactions. It has been suggested that IEL are regulated through the interaction of the CD8αα homodimer with the thymus leukemia (TL) antigen expressed by intestinal epithelial cells. We have generated and characterized mice genetically-deficient in TL expression. Our findings show that TL expression has a critical role in maintaining IEL effector functions. Also, TL deficiency accelerated colitis in a genetic model of inflammatory bowel disease. These findings reveal an important regulatory role of TL in controlling IEL function and intestinal inflammation.


2011 ◽  
Vol 11 ◽  
pp. 1536-1547 ◽  
Author(s):  
Donata Lissner ◽  
Britta Siegmund

Inflammasomes are intracellular multiprotein complexes that coordinate the maturation of interleukin (IL)-1β and IL-18 in response to pathogens and metabolic danger. Both cytokines have been linked to intestinal inflammation. However, recently evolving concepts ascribe a major role to the inflammasome in maintaining intestinal homeostasis. This review recapitulates its position in the development of inflammatory bowel disease, thereby outlining a model in which hypo- as well as hyperfunctionality can lead to an imbalance of the system, depending on the specific cell population affected. In the epithelium, the inflammasome is essential for regulation of permeability and epithelial regeneration through sensing of commensal microbes, while excessive inflammasome activation within the lamina propria contributes to severe intestinal inflammation.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Qingdong Guan ◽  
Jiguo Zhang

Cytokines play an important role in the immunopathogenesis of inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis, where they drive and regulate multiple aspects of intestinal inflammation. The imbalance between proinflammatory and anti-inflammatory cytokines that occurs in IBD results in disease progression and tissue damage and limits the resolution of inflammation. Targeting cytokines have been novel strategies in the treatment of IBD. Recent studies show the beneficial effects of anticytokine treatments to IBD patients, and multiple novel cytokines are found to be involved in the pathogenesis of IBD. In this review, we will discuss the recent advances of novel biologics in clinics and clinical trials, and novel proinflammatory and anti-inflammatory cytokines found in IBD with focusing on IL-12 family and IL-1 family members as well as their relevance to the potential therapy of IBD.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shunyu Yao ◽  
Zixi Zhao ◽  
Weijun Wang ◽  
Xiaolu Liu

The prevalence of inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn’s disease (CD), increases gradually worldwide in the past decades. IBD is generally associated with the change of the immune system and gut microbiota, and the conventional treatments usually result in some side effects. Bifidobacterium longum, as colonizing bacteria in the intestine, has been demonstrated to be capable of relieving colitis in mice and can be employed as an alternative or auxiliary way for treating IBD. Here, the mechanisms of the Bifidobacterium longum in the treatment of IBD were summarized based on previous cell and animal studies and clinical trials testing bacterial therapies. This review will be served as a basis for future research on IBD treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yashar Houshyar ◽  
Luca Massimino ◽  
Luigi Antonio Lamparelli ◽  
Silvio Danese ◽  
Federica Ungaro

Inflammatory Bowel Disease (IBD) is a multifaceted class of relapsing-remitting chronic inflammatory conditions where microbiota dysbiosis plays a key role during its onset and progression. The human microbiota is a rich community of bacteria, viruses, fungi, protists, and archaea, and is an integral part of the body influencing its overall homeostasis. Emerging evidence highlights dysbiosis of the archaeome and mycobiome to influence the overall intestinal microbiota composition in health and disease, including IBD, although they remain some of the least understood components of the gut microbiota. Nonetheless, their ability to directly impact the other commensals, or the host, reasonably makes them important contributors to either the maintenance of the mucosal tissue physiology or to chronic intestinal inflammation development. Therefore, the full understanding of the archaeome and mycobiome dysbiosis during IBD pathogenesis may pave the way to the discovery of novel mechanisms, finally providing innovative therapeutic targets that can soon implement the currently available treatments for IBD patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rita Lippai ◽  
Apor Veres-Székely ◽  
Erna Sziksz ◽  
Yoichiro Iwakura ◽  
Domonkos Pap ◽  
...  

AbstractRecently the role of Parkinson’s disease 7 (PARK7) was studied in gastrointestinal diseases, however, the complex role of PARK7 in the intestinal inflammation is still not completely clear. Expression and localization of PARK7 were determined in the colon biopsies of children with inflammatory bowel disease (IBD), in the colon of dextran sodium sulphate (DSS) treated mice and in HT-29 colonic epithelial cells treated with interleukin (IL)-17, hydrogen peroxide (H2O2), tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β or lipopolysaccharide (LPS). Effect of PARK7 on the synthesis of IBD related cytokines was determined using PARK7 gene silenced HT-29 cells and 3,4,5-trimethoxy-N-(4-(8-methylimidazo(1,2-a)pyridine-2-yl)phenyl)benzamide (Comp23)—compound increasing PARK7 activity—treated mice with DSS-colitis. PARK7 expression was higher in the mucosa of children with Crohn’s disease compared to that of controls. While H2O2 and IL-17 treatment increased, LPS, TNF-α or TGF-β treatment decreased the PARK7 synthesis of HT-29 cells. PARK7 gene silencing influenced the synthesis of IL1B, IL6, TNFA and TGFB1 in vitro. Comp23 treatment attenuated the ex vivo permeability of colonic sacs, the clinical symptoms, and mucosal expression of Tgfb1, Il1b, Il6 and Il10 of DSS-treated mice. Our study revealed the role of PARK7 in the regulation of IBD-related inflammation in vitro and in vivo, suggesting its importance as a future therapeutic target.


2020 ◽  
Vol 21 (14) ◽  
pp. 1428-1439
Author(s):  
Rhian Stavely ◽  
Raquel Abalo ◽  
Kulmira Nurgali

Ulcerative colitis (UC) and Crohn’s disease (CD) are pathological conditions with an unknown aetiology that are characterised by severe inflammation of the intestinal tract and collectively referred to as inflammatory bowel disease (IBD). Current treatments are mostly ineffective due to their limited efficacy or toxicity, necessitating surgical resection of the affected bowel. The management of IBD is hindered by a lack of prognostic markers for clinical inflammatory relapse. Intestinal inflammation associates with the infiltration of immune cells (leukocytes) into, or surrounding the neuronal ganglia of the enteric nervous system (ENS) termed plexitis or ganglionitis. Histological observation of plexitis in unaffected intestinal regions is emerging as a vital predictive marker for IBD relapses. Plexitis associates with alterations to the structure, cellular composition, molecular expression and electrophysiological function of enteric neurons. Moreover, plexitis often occurs before the onset of gross clinical inflammation, which may indicate that plexitis can contribute to the progression of intestinal inflammation. In this review, the bilateral relationships between the ENS and inflammation are discussed. These include the effects and mechanisms of inflammation-induced enteric neuronal loss and plasticity. Additionally, the role of enteric neurons in preventing antigenic/pathogenic insult and immunomodulation is explored. While all current treatments target the inflammatory pathology of IBD, interventions that protect the ENS may offer an alternative avenue for therapeutic intervention.


Sign in / Sign up

Export Citation Format

Share Document