scholarly journals Avocado leaves: Influence of drying process, thermal incubation, and storage conditions on preservation of polyphenolic compounds and antioxidant activity

Author(s):  
Fábio Tomio Yamassaki ◽  
Luciano Henrique Campestrini ◽  
Selma Faria Zawadzki-Baggio ◽  
Juliana Bello Baron Maurer
Foods ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 108
Author(s):  
Agnieszka Nawirska-Olszańska ◽  
Marta Pasławska ◽  
Bogdan Stępień ◽  
Maciej Oziembłowski ◽  
Kinga Sala ◽  
...  

Food technology seeks ways to preserve products while maintaining high bioactive properties. Therefore, an attempt was made to assess the effect of the process of impregnation with apple-pear juice and the drying process on the content of bioactive compounds in chokeberry fruit. Chokeberry fruits were subjected to impregnation with apple-pear juice at three levels of vacuum pressure, 4, 6, and 8 kPa; then, they were dried using microwave-vacuum technology. The water activity of the obtained products, the content of fructose, glucose, sorbitol, and polyphenolic compounds, and antioxidant activity were determined. A total of 20 polyphenolic compounds were identified in the fruits and the obtained products (seven anthocyanins, six flavonols, four phenolic acids, and three flavan-3-ols). Preliminary processing, which consisted of introducing the juice ingredients into tissue of the chokeberry fruit, resulted in increased content of bioactive compounds. Moreover, a positive effect of impregnation on the antioxidant stability of the fruit after drying was noted. Water activity in the obtained products showed their microbiological safety. Impregnation at 4 kPa vacuum pressure proved to be the most desirable; in such conditions, the best product in terms of the content of bioactive compounds was obtained.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 770
Author(s):  
Cecilia Castro-López ◽  
Catarina Gonçalves ◽  
Janeth M. Ventura-Sobrevilla ◽  
Lorenzo M. Pastrana ◽  
Cristóbal N. Aguilar-González ◽  
...  

Moringa extract was microencapsulated for the first time by spray-drying technique using tragacanth gum (MorTG) to improve its stability under gastrointestinal and storage conditions, assessing total polyphenolic content (TPC) and antioxidant activity. Additionally, cytotoxicity of the microencapsulated components was evaluated after contact with Caco-2 cells. Results showed that TPC was released as follows—oral (9.7%) < gastric (35.2%) < intestinal (57.6%). In addition, the antioxidant activity in in vitro digestion reached up to 16.76 ±0.15 mg GAE g−1, which was 300% higher than the initial value. Furthermore, microencapsulated moringa extract presented a half-life up to 45 days of storage, where the noticeably change was observed at 35 °C and 52.9% relative humidity. Finally, direct treatment with 0.125 mg mL−1 MorTG on Caco-2 cells showed a slight antiproliferative effect, with a cell viability of approx. 87%. Caco-2 cells’ viability demonstrated non-cytotoxicity, supporting the safety of the proposed formulation and potential use within the food field.


2020 ◽  
Vol 10 (8) ◽  
pp. 2685 ◽  
Author(s):  
Min-Yun Chang ◽  
Yin-Yi Lin ◽  
Yu-Chia Chang ◽  
Wen-Ying Huang ◽  
Wen-Shin Lin ◽  
...  

This study determined antioxidant activity in terms of the 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging ability and total phenolic content of black tea under different infusion and storage conditions. High performance liquid chromatography analysis identified caffeine, (−)-epigallocatechin, (−)-epicatechin-3-gallate, (−)-epigallocatechin-3-gallate and (−)-gallocatechin-3-gallate in the tea sample. The water–tea leaves weight ratio did not affect the DPPH scavenging ability. However, infusion temperature affected the DPPH scavenging activity and the total phenolic content. In the present study, the 50% inhibitory concentrations (IC50) for DPPH of black tea infused at 60 to 100 °C ranged from 100.0 ± 13.7 to 28.4 ± 4.8 μg/mL. The total phenolic content of black tea steeped at 60 to 100 °C ranged from 50.4 ± 5.2 to 178.6 ± 16.4 mg gallic acid equivalent/g dry leaf. Black tea exhibited increased antioxidant activity when the infusion temperature was increased. Regarding short-term storage, the DPPH scavenging ability and total phenolic content of black tea did not significantly change within 15 days. This result was consistent for storage temperatures of 4, 9, and 25 °C.


2013 ◽  
Vol 2 (1s) ◽  
pp. 10 ◽  
Author(s):  
Rasoul Shafiei ◽  
Frank Delvigne ◽  
Phillipe Thonart

Downstream processes have great influences on bacterial starter production. Different modifications occur to cellular compounds during freeze-drying process and storage of bacterial starters. Consequently, viability and culturability (multiplication capacity) undergo some changes. In this study, the effects of freeze-drying process and storage conditions were examined on cell envelope integrity, respiration and culturability of <em>Acetobacter senegalensis</em>. Freezing of cells protected with mannitol (20% w/w) did not affect cell multiplication and respiration considerably; however, 19% of cells showed compromised cell envelope after freezing. After drying, 1.96&times;10<sup>11</sup> CFU/g were enumerated, indicating that about 34% of the cells could survive and keep their culturability. Drying of the cells induced further leakage in cell envelope and finally 81% of cells appeared as injured ones; however, 87% of the dried cells maintained their respiration capacity. Storage temperature had significant effect on cell multiplication ability; higher storage temperature (35&deg;C) caused 8.59-log reduction in cell culturability after nine-month period of storage. Collapse of cell envelop integrity and respiration was observed at 35&deg;C. At lower storage temperature (4&deg;C), the culturability decreased about one-log reduction after nine months. Cell envelope integrity was subjected to minor changes during a period of nine month-storage at 4&deg;C whereas a heterogeneous population of cells with different respiration capacity emerged at 4&deg;C. These results indicate that a major part of cells undergone drying process and storage entered into viable but non-culturable state. In addition, usage of different culture media didn&rsquo;t improve resuscitation. Besides, it seems that sub-lethal damages to cell envelope caused uptake of propidium iodide, however these kinds of injuries could not impress cell multiplications and respiration.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2301
Author(s):  
Helena Araújo-Rodrigues ◽  
Diva Santos ◽  
Débora Campos ◽  
Suse Guerreiro ◽  
Modesta Ratinho ◽  
...  

The high nutritional value of vegetables is well recognized, but their short shelf life and seasonal nature result in massive losses and wastes. Vegetable’s byproducts are an opportunity to develop value-added ingredients, increasing food system efficiency and environmental sustainability. In the present work, pulps and powders of byproducts from rocket and spinach leaves and watercress were developed and stored for six months under freezing and vacuum conditions, respectively. After processing and storage, microbiological quality, bioactive compounds (polyphenols, carotenoids and tocopherols profiles), antioxidant capacity, and pulps viscosity were analyzed. Generally, the developed vegetable’s pulps and powders were considered microbiologically safe. Although some variations after processing and storage were verified, the antioxidant activity was preserved or improved. A rich phenolic composition was also registered and maintained. During freezing, the quantitative carotenoid profile was significantly improved (mainly in rocket and spinach), while after drying, there was a significant decrease. A positive effect was verified in the vitamin E level. Both processing and storage conditions resulted in products with relevant phenolics, carotenoids and tocopherol levels, contributing to the antioxidant activity registered. Thus, this study demonstrates the potential of vegetable byproducts valorization through developing these functional ingredients bringing economic and environmental value into the food chain.


Sign in / Sign up

Export Citation Format

Share Document