Infrared imaging a new non-invasive machine learning technology for animal husbandry

2020 ◽  
pp. 1-10
Author(s):  
Manasee Choudhury ◽  
Tulika Saikia ◽  
Santanu Banik ◽  
Girish Patil ◽  
Seema Rani Pegu ◽  
...  
Author(s):  
Naoko FUKUSHI ◽  
Daishiro KOBAYASHI ◽  
Seiji IWAO ◽  
Ryosuke KASAHARA ◽  
Nobuyoshi YABUKI

2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110027
Author(s):  
Jianchen Zhu ◽  
Kaixin Han ◽  
Shenlong Wang

With economic growth, automobiles have become an irreplaceable means of transportation and travel. Tires are important parts of automobiles, and their wear causes a large number of traffic accidents. Therefore, predicting tire life has become one of the key factors determining vehicle safety. This paper presents a tire life prediction method based on image processing and machine learning. We first build an original image database as the initial sample. Since there are usually only a few sample image libraries in engineering practice, we propose a new image feature extraction and expression method that shows excellent performance for a small sample database. We extract the texture features of the tire image by using the gray-gradient co-occurrence matrix (GGCM) and the Gauss-Markov random field (GMRF), and classify the extracted features by using the K-nearest neighbor (KNN) classifier. We then conduct experiments and predict the wear life of automobile tires. The experimental results are estimated by using the mean average precision (MAP) and confusion matrix as evaluation criteria. Finally, we verify the effectiveness and accuracy of the proposed method for predicting tire life. The obtained results are expected to be used for real-time prediction of tire life, thereby reducing tire-related traffic accidents.


2021 ◽  
Vol 53 (2) ◽  
Author(s):  
Sen Yang ◽  
Yaping Zhang ◽  
Siu-Yeung Cho ◽  
Ricardo Correia ◽  
Stephen P. Morgan

AbstractConventional blood pressure (BP) measurement methods have different drawbacks such as being invasive, cuff-based or requiring manual operations. There is significant interest in the development of non-invasive, cuff-less and continual BP measurement based on physiological measurement. However, in these methods, extracting features from signals is challenging in the presence of noise or signal distortion. When using machine learning, errors in feature extraction result in errors in BP estimation, therefore, this study explores the use of raw signals as a direct input to a deep learning model. To enable comparison with the traditional machine learning models which use features from the photoplethysmogram and electrocardiogram, a hybrid deep learning model that utilises both raw signals and physical characteristics (age, height, weight and gender) is developed. This hybrid model performs best in terms of both diastolic BP (DBP) and systolic BP (SBP) with the mean absolute error being 3.23 ± 4.75 mmHg and 4.43 ± 6.09 mmHg respectively. DBP and SBP meet the Grade A and Grade B performance requirements of the British Hypertension Society respectively.


2021 ◽  
Vol 108 (Supplement_3) ◽  
Author(s):  
J Bote ◽  
J F Ortega-Morán ◽  
C L Saratxaga ◽  
B Pagador ◽  
A Picón ◽  
...  

Abstract INTRODUCTION New non-invasive technologies for improving early diagnosis of colorectal cancer (CRC) are demanded by clinicians. Optical Coherence Tomography (OCT) provides sub-surface structural information and offers diagnosis capabilities of colon polyps, further improved by machine learning methods. Databases of OCT images are necessary to facilitate algorithms development and testing. MATERIALS AND METHODS A database has been acquired from rat colonic samples with a Thorlabs OCT system with 930nm centre wavelength that provides 1.2KHz A-scan rate, 7μm axial resolution in air, 4μm lateral resolution, 1.7mm imaging depth in air, 6mm x 6mm FOV, and 107dB sensitivity. The colon from anaesthetised animals has been excised and samples have been extracted and preserved for ex-vivo analysis with the OCT equipment. RESULTS This database consists of OCT 3D volumes (C-scans) and 2D images (B-scans) of murine samples from: 1) healthy tissue, for ground-truth comparison (18 samples; 66 C-scans; 17,478 B-scans); 2) hyperplastic polyps, obtained from an induced colorectal hyperplastic murine model (47 samples; 153 C-scans; 42,450 B-scans); 3) neoplastic polyps (adenomatous and adenocarcinomatous), obtained from clinically validated Pirc F344/NTac-Apcam1137 rat model (232 samples; 564 C-scans; 158,557 B-scans); and 4) unknown tissue (polyp adjacent, presumably healthy) (98 samples; 157 C-scans; 42,070 B-scans). CONCLUSIONS A novel extensive ex-vivo OCT database of murine CRC model has been obtained and will be openly published for the research community. It can be used for classification/segmentation machine learning methods, for correlation between OCT features and histopathological structures, and for developing new non-invasive in-situ methods of diagnosis of colorectal cancer.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1116
Author(s):  
Zeba Mahmood ◽  
Vacius Jusas

This paper introduces a blockchain-based federated learning (FL) framework with incentives for participating nodes to enhance the accuracy of classification problems. Machine learning technology has been rapidly developed and changed from a global perspective for the past few years. The FL framework is based on the Ethereum blockchain and creates an autonomous ecosystem, where nodes compete to improve the accuracy of classification problems. With privacy being one of the biggest concerns, FL makes use of the blockchain-based approach to ensure privacy and security. Another important technology that underlies the FL framework is zero-knowledge proofs (ZKPs), which ensure that data uploaded to the network are accurate and private. Basically, ZKPs allow nodes to compete fairly by only submitting accurate models to the parameter server and get rewarded for that. We have conducted an analysis and found that ZKPs can help improve the accuracy of models submitted to the parameter server and facilitate the honest participation of all nodes in FL.


Author(s):  
Zuoshan Li

With the continuous progress of society, the level of science and technology of the country has made a leap forward development, the research energy of various industries on new science and technology continues to deepen, greatly promoting the promotion of science and technology. At the same time, with the increase in social pressure, more and more people pursue spiritual relaxation, and appropriate leisure and entertainment activities have gradually become a part of people’s life. Film plays an irreplaceable role in leisure and entertainment. Mainly from the background of the development of the film industry towards intelligent direction, and then use machine learning technology to study the application of film animation production and film virtual assets analysis and investigation. Based on the Internet of things technology, we also vigorously develop the ways and methods of visual expression of movies, and at the same time introduce new expression modes to promote the expression effect of the intelligent system. Finally, by comparing various algorithms in machine learning technology, the results of intelligent expression of random number forest algorithm in machine learning technology are more accurate. The system is also applied to 3D animation production to observe the measurement error of 3D motion data and facial expression data.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2469
Author(s):  
Chen-Yi Xie ◽  
Chun-Lap Pang ◽  
Benjamin Chan ◽  
Emily Yuen-Yuen Wong ◽  
Qi Dou ◽  
...  

Esophageal cancer (EC) is of public health significance as one of the leading causes of cancer death worldwide. Accurate staging, treatment planning and prognostication in EC patients are of vital importance. Recent advances in machine learning (ML) techniques demonstrate their potential to provide novel quantitative imaging markers in medical imaging. Radiomics approaches that could quantify medical images into high-dimensional data have been shown to improve the imaging-based classification system in characterizing the heterogeneity of primary tumors and lymph nodes in EC patients. In this review, we aim to provide a comprehensive summary of the evidence of the most recent developments in ML application in imaging pertinent to EC patient care. According to the published results, ML models evaluating treatment response and lymph node metastasis achieve reliable predictions, ranging from acceptable to outstanding in their validation groups. Patients stratified by ML models in different risk groups have a significant or borderline significant difference in survival outcomes. Prospective large multi-center studies are suggested to improve the generalizability of ML techniques with standardized imaging protocols and harmonization between different centers.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 508
Author(s):  
José Luis Ruvalcaba-Sil ◽  
Luis Barba ◽  
Edgar Casanova-González ◽  
Alejandro Mitrani ◽  
Margarita Muñoz ◽  
...  

Techinantitla building complex, in the Amanalco neighborhood of the ancient city of Teotihuacan, is famous for the iconography and quality of the mural paintings found in this site. A significant part of this heritage has been lost due to looting. In recent years, an interdisciplinary research project was developed to study the limited patrimony that was left. As part of this study, we first employed geophysical techniques to reconstruct the architectural pattern of the compound’s remaining walls, where other paintings may still be found. Then, we applied a non-invasive methodology to characterize a large set of fragments recovered in the 1980s and to gain information on their pigments and manufacturing techniques. This methodology included False Color Infrared Imaging, X-ray Fluorescence and Fiber-Optics Reflectance Spectroscopy, and led to the identification of hematite, calcite, malachite, azurite and an unidentified blue pigment. The results were compared with a previous study performed on a set of Techinantitla mural paintings looted in the 1960s. A broader comparison with contemporary mural paintings from other Teotihuacan complexes shows good agreement in the materials used. These results may suggest a standardization in the making of Teotihuacan mural painting during the Xolapan period (350 to 550 AD).


Sign in / Sign up

Export Citation Format

Share Document