scholarly journals Analytical Approach for the Study of Teotihuacan Mural Paintings from the Techinantitla Complex

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 508
Author(s):  
José Luis Ruvalcaba-Sil ◽  
Luis Barba ◽  
Edgar Casanova-González ◽  
Alejandro Mitrani ◽  
Margarita Muñoz ◽  
...  

Techinantitla building complex, in the Amanalco neighborhood of the ancient city of Teotihuacan, is famous for the iconography and quality of the mural paintings found in this site. A significant part of this heritage has been lost due to looting. In recent years, an interdisciplinary research project was developed to study the limited patrimony that was left. As part of this study, we first employed geophysical techniques to reconstruct the architectural pattern of the compound’s remaining walls, where other paintings may still be found. Then, we applied a non-invasive methodology to characterize a large set of fragments recovered in the 1980s and to gain information on their pigments and manufacturing techniques. This methodology included False Color Infrared Imaging, X-ray Fluorescence and Fiber-Optics Reflectance Spectroscopy, and led to the identification of hematite, calcite, malachite, azurite and an unidentified blue pigment. The results were compared with a previous study performed on a set of Techinantitla mural paintings looted in the 1960s. A broader comparison with contemporary mural paintings from other Teotihuacan complexes shows good agreement in the materials used. These results may suggest a standardization in the making of Teotihuacan mural painting during the Xolapan period (350 to 550 AD).

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Edgar Casanova-González ◽  
Miguel Ángel Maynez-Rojas ◽  
Alejandro Mitrani ◽  
Isaac Rangel-Chávez ◽  
María Angélica García-Bucio ◽  
...  

Abstract Almost three hundred Spanish colonial missions—or their remains—are scattered over the vast state of Chihuahua in northern Mexico. A few of them still display painted decorations on the wood ceilings and walls. The decorated areas vary greatly, from the whole ceiling of the main aisle to just a few square meters in a lateral chapel, and so does the conservation state of the paintings. In this context, the information regarding the paintings’ composition plays a key role in the restoration and conservation processes. For the gathering of such information, we propose a combined methodology for a fast, non-destructive and non-invasive characterization of such paintings with a minimum of techniques. This methodology includes false color infrared imaging as a first approach to determine the composition of large areas of the paintings and the homogeneity of the materials used in the painted areas, followed by small area analysis by X-ray fluorescence and fiber-optics reflectance spectroscopy. This methodology was applied to characterize the elemental and molecular composition of the decorations for four missions in Chihuahua in a fast and specific manner, revealing the use of a mix of mineral and organic materials including indigo and cochineal, and detecting differences between the missions. The methodology presented here can be easily applied for the study of a wider number of missions in Chihuahua and other regions to provide outstanding information of materials, pictorial techniques and deterioration conditions.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Lino Bianco

AbstractRuins are a statement on the building materials used and the construction method employed. Casa Ippolito, now in ruins, is typical of 17th-century Maltese aristocratic country residences. It represents an illustration of secondary or anthropogenic geodiversity. This paper scrutinises these ruins as a primary source in reconstructing the building’s architecture. The methodology involved on-site geographical surveying, including visual inspection and non-invasive tests, a geological survey of the local lithostratigraphy, and examination of notarial deeds and secondary sources to support findings about the building’s history as read from its ruins. An unmanned aerial vehicle was used to digitally record the parlous state of the architectural structure and karsten tubes were used to quantify the surface porosity of the limestone. The results are expressed from four perspectives. The anatomy of Casa Ippolito, as revealed in its ruins, provides a cross-section of its building history and shows two distinct phases in its construction. The tissue of Casa Ippolito—the building elements and materials—speaks of the knowledge of raw materials and their properties among the builders who worked on both phases. The architectural history of Casa Ippolito reveals how it supported its inhabitants’ wellbeing in terms of shelter, water and food. Finally, the ruins in their present state bring to the fore the site’s potential for cultural tourism. This case study aims to show that such ruins are not just geocultural remains of historical built fabric. They are open wounds in the built structure; they underpin the anatomy of the building and support insights into its former dynamics. Ruins offer an essay in material culture and building physics. Architectural ruins of masonry structures are anthropogenic discourse rendered in stone which facilitate not only the reconstruction of spaces but also places for human users; they are a statement on the wellbeing of humanity throughout history.


2018 ◽  
Vol 7 (9) ◽  
pp. 350 ◽  
Author(s):  
Luis López-Fernández ◽  
Susana Lagüela ◽  
Pablo Rodríguez-Gonzálvez ◽  
José Martín-Jiménez ◽  
Diego González-Aguilera

Close-range photogrammetry and thermographic imaging techniques are used for the acquisition of all the data needed for the non-invasive assessment of a honeybee hive population. Temperature values complemented with precise 3D geometry generated using novel close-range photogrammetric and computer vision algorithms are used for the computation of the inner beehive temperature at each point of its surface. The methodology was validated through its application to three reference beehives with different population levels. The temperatures reached by the exterior surfaces of the hives showed a direct correlation with the population level. In addition, the knowledge of the 3D reality of the hives and the position of each temperature value allowed the positioning of the bee colonies without the need to open the hives. This way, the state of honeybee hives regarding the growth of population can be estimated without disturbing its natural development.


2015 ◽  
Vol 69 (4) ◽  
pp. 387-393
Author(s):  
Sofija Stojanovic ◽  
Maja Gajic-Kvascev ◽  
Ljiljana Damjanovic

Russian icon painted on wooden panel analyzed in this work is interesting for art historians because there is no precise information in which workshops it was made or who the author was. Similar icons are often found in churches and monasteries in our region. In order to obtain information about materials used for creation of investigated icon two micro-analytical techniques were used: Energy-Dispersive X-Ray Fluorescence spectroscopy (EDXRF) and micro-Raman spectroscopy. Obtained results confirmed presence of following materials: lead-white, vermilion, minium, ultramarine, brown and green earth pigments and silver in combination with yellow organic varnish, which served to an iconographer for gilding. Ground layer was made of calcite. Blue pigment ultramarine was probably used for blue colour as well as for obtaining particulars hues in several parts of the paint layer. This can be important information for further research concerning particular workshop in which the icon was made. Identified materials are typical for Russian iconography of the 19th century.


Author(s):  
Michael Tite ◽  
Gareth Hatton

Egyptian blue was first used as a pigment on tomb paintings in Egypt from around 2300 BC, and during the subsequent 3,000 years, its use both as a pigment and in the production of small objects spread throughout the Near East and Eastern Mediterranean and to the limits of the Roman Empire. During the Roman period, Egyptian blue was distributed in the form of balls of pigment up to about 15mm across, and appears to have been the most common blue pigment to be used on wall paintings throughout the Empire. Egyptian blue was both the first synthetic pigment, and one of the first materials from antiquity to be examined by modern scientific methods. A small pot containing the pigment that was found during the excavations at Pompeii in 1814 was examined by Sir Humphrey Davy. Subsequently, x-ray diffraction analysis was used to identify the compound as the calcium-copper tetrasilicate C<sub>a</sub>C<sub>u</sub>Si<sub>4</sub>O<sub>10</sub>, and to establish that Egyptian blue and the rare natural mineral cuprorivaite are the same material. Examination of Egyptian blue samples in cross-section in a scanning electron microscope (SEM) revealed that they consist of an intimate mixture of Egyptian blue crystals (i.e. C<sub>a</sub>C<sub>u</sub>Si<sub>4</sub>O<sub>10</sub>) and partially reacted quartz particles together with varying amounts of glass phase (Tite, Bimson, and Cowell 1984). At this stage it should be emphasized that, in the literature, the term Egyptian blue tends to be used to describe both crystals of calcium-copper tetrasilicate and the bulk polycrystalline material that is used as the pigment and is sometimes referred to as frit. In this chapter, the suffix ‘crystal’ or ‘mineral’ will be added when the former meaning applies, and the suffix ‘pigment’, ‘sample’, or ‘frit’ will be added when the latter meaning applies. For the current study, a small group of Roman Egyptian blue samples were examined using scanning electron microscopy (SEM) with attached analytical facilities. Using the chemical compositions of the samples, together with the description of the manufacture of Egyptian blue given by Vitruvius (Morgan 1960) at the beginning of the first century BC in his Ten Books on Architecture, an attempt is made to identify the raw materials used in the production of Roman Egyptian blue.


2019 ◽  
Vol 66 ◽  
pp. 463-477
Author(s):  
Hywel R. Thomas

Peter Wells will be remembered internationally for his many outstanding contributions in the field of medical ultrasound. He pioneered the development of non-invasive imaging techniques in the development of ultrasonics as a diagnostic and surgical tool. He was the originator and developer of instruments for ultrasonic surgery and ultrasonic power measurement, as well as the two-dimensional, articulated-arm ultrasonic general purpose scanner and the water-immersion ultrasonic breast scanner. He demonstrated ultrasonic-pulsed Doppler range-gating, and was the discoverer of the ultrasonic Doppler signal characteristic of malignant tumour neovascularization. He investigated ultrasonic bioeffects and formulated ultrasonic safety guidelines and conditions for prudent use of ultrasonic diagnosis. His outstanding and sustained achievements in the medical applications of ultrasound extend continuously from the 1960s until a few days before his death at the age of 80. Anyone who has ever benefited from an ultrasound procedure owes a debt of gratitude to Peter Wells.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Liu Liu ◽  
Jintao He ◽  
Mei Ye ◽  
Zhanyun Zhu ◽  
Qing Zhong ◽  
...  

The Kizil Cave-Temple Complex has been registered as a World Heritage site and was formerly a part of Kucha—one of the most powerful and prosperous regions of ancient China. The No. 1 Cave is of great significance due to its three surviving clay sculptures. The mural paintings inside the cave are experiencing severe degradation. Scientific methods such as optical microscopy (OM), scanning electron microscopy combined with energy dispersive X-ray analysis (SEM-EDS), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffusion (XRD) were applied to analyze the pigments and organic coating used in the No. 1 Cave. The results show that paratacamite, gypsum, and lapis lazuli were used as the green, white, and blue pigments, respectively. Poly-n-butyl methacrylate (PBMA) was used as an organic coating of the blue pigment and has accelerated the aging of the mural paintings. This study shares insights into the materials and techniques employed and assesses the preservation status of the mural paintings, providing scientific support for protection and restoration schemes.


2019 ◽  
Vol 290 ◽  
pp. 08010
Author(s):  
Karolina Karolewska ◽  
Bogdan Ligaj

The most commonly used technology among the additive manufacturing is Direct Metal Laser Sintering (DMLS). This process is based on selective laser sintering (SLS). The method gained its popularity due to the possibility of producing metal parts of any geometry, which would be difficult or impossible to obtain by the use of conventional manufacturing techniques. Materials used in the elements manufacturing process are: titanium alloys (e.g. Ti6Al4V), aluminium alloy AlSi10Mg, etc. Elements printed from Ti6Al4V titanium alloy find their application in many industries. Details produced by additive technology are often used in medicine as skeletal, and dental implants. Another example of the DMLS elements use is the aerospace industry. In this area, the additive manufacturing technology produces, i.a. parts of turbines. In addition to the aerospace and medical industries, DMLS technology is also used in motorsport for exhaust pipes or the gearbox parts. The research objects are samples for static tests. These samples were made of Ti6Al4V alloy by the DMLS method and the rolling method from a drawn rod. The aim of the paper is the mechanical properties comparative analysis of the Ti6Al4V alloy produced by the DMLS method under static loading conditions and microstructure analysis of this material.


Fibers ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 105 ◽  
Author(s):  
Alexander Veber ◽  
Zhuorui Lu ◽  
Manuel Vermillac ◽  
Franck Pigeonneau ◽  
Wilfried Blanc ◽  
...  

For years, scientists have been looking for different techniques to make glasses perfect: fully amorphous and ideally homogeneous. Meanwhile, recent advances in the development of particle-containing glasses (PCG), defined in this paper as glass-ceramics, glasses doped with metallic nanoparticles, and phase-separated glasses show that these “imperfect” glasses can result in better optical materials if particles of desired chemistry, size, and shape are present in the glass. It has been shown that PCGs can be used for the fabrication of nanostructured fibers—a novel class of media for fiber optics. These unique optical fibers are able to outperform their traditional glass counterparts in terms of available emission spectral range, quantum efficiency, non-linear properties, fabricated sensors sensitivity, and other parameters. Being rather special, nanostructured fibers require new, unconventional solutions on the materials used, fabrication, and characterization techniques, limiting the use of these novel materials. This work overviews practical aspects and progress in the fabrication and characterization methods of the particle-containing glasses with particular attention to nanostructured fibers made of these materials. A review of the recent achievements shows that current technologies allow producing high-optical quality PCG-fibers of different types, and the unique optical properties of these nanostructured fibers make them prospective for applications in lasers, optical communications, medicine, lighting, and other areas of science and industry.


2020 ◽  
pp. 1-10
Author(s):  
Manasee Choudhury ◽  
Tulika Saikia ◽  
Santanu Banik ◽  
Girish Patil ◽  
Seema Rani Pegu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document