scholarly journals Flexural capacity of concrete beams reinforced with steel and fibre‐reinforced polymer (FRP) bars

2004 ◽  
Vol 10 (3) ◽  
pp. 209-215 ◽  
Author(s):  
Hau Yan Leung
2004 ◽  
Vol 10 (3) ◽  
pp. 209-215
Author(s):  
Hau Yan Leung

Although much research on concrete beams reinforced with fibre‐reinforced polymer (FRP) rods has been conducted in recent years, their use still does not receive the attention it deserves from practicising engineers. This is attributed to the fact that FRP is brittle in nature and the collapse of FRP‐reinforced concrete member may be catastrophic. A rational beam design can incorporate a hybrid use of FRP rods and steel rods. Current design codes only deal with steel‐reinforced or FRP‐reinforced concrete members. Therefore in this study some design charts and equations for concrete beam sections reinforced with FRP rods and steel rebars were generated. Results from the theoretical derivations agreed well with experimental data.


2010 ◽  
Vol 37 (10) ◽  
pp. 1371-1382 ◽  
Author(s):  
Shehab M. Soliman ◽  
Ehab El-Salakawy ◽  
Brahim Benmokrane

Fibre reinforced polymer (FRP) composite materials have been used as internal and external reinforcement for concrete structures. Flexural strengthening of concrete elements using near surface mounted (NSM)–FRP materials are a promising technology. This research is designed to investigate the behaviour of reinforced concrete beams strengthened in flexure with NSM–FRP bars. A total of 20 reinforced concrete beams were tested. Different parameters including internal steel reinforcement ratio, type of NSM–FRP bars, FRP bar diameter, bonded length, and groove size were investigated in this research. Test results showed that the use of NSM–FRP bars is effective in increasing the flexural capacity of concrete beams. In addition, a nonlinear 3D finite element (FE) analysis was used to numerically simulate the behaviour of the test beams. Comparisons between the FE predictions and experimental results showed very good agreement in terms of the load−deflection and load−strain relationships, ultimate capacities, and modes of failure for the tested beams.


2022 ◽  
pp. 136943322110542
Author(s):  
Nagajothi Subramanian ◽  
Elavenil Solaiyan ◽  
Angalaeswari Sendrayaperumal ◽  
Natrayan Lakshmaiya

The paper presents the experimental investigations on the flexural behaviour of geopolymer concrete beams reinforced with Basalt Fibre Reinforced Polymer (BFRP)/Glass Fibre Reinforced Polymer (GFRP) rebars and the effect of inclusion of the new adhesively bonded BFRP/GFRP stirrups. M30 grade geopolymer and conventional concrete beams with the dimension of 100 × 160 × 1700 mm were cast to investigae the flexural behaviour of BFRP/GFRP and steel bars. This study also examined the mode of failure, deflection behaviour, curvature moment capacity, crack width, pattern, propagation, strains and average crack width of the BFRP/GFRP bars with stirrups in the geopolymer concretes using a four-point static bending test. The results were compared to that of conventional steel-reinforced concrete, and it was found that the Basalt and Glass reinforced polymer beams demonstrated premature failure and sudden shear failure. Further, the FRP bars exhibited higher mid-span deflection, crack width and crack propagation than steel bars. Crack spacing of the FRP bars decreased with an increase in the number of cracks. The correlation between the load and the deflection behaviour of the beams was determined using statistical analysis of multi variables regression.


2020 ◽  
Vol 24 (1) ◽  
pp. 11-16
Author(s):  
Saddam - Husein ◽  
Rudy Djamaluddin ◽  
Rita Irmawaty ◽  
Kusnadi Kusnadi

SADDAM HUSEIN. Analisa Pola Kegagalan Balok Beton Menggunakan GFRP Bar Tanpa Selimut Beton (dibimbing oleh Rudi Djamaluddin dan Rita Irmawaty) Struktur beton bertulang yang menggunakan tulangan baja pada daerah korosif, menjadi rawan terhadap kerusakan atau penurunan kekuatannya akibat korosi.Korosi pada tulangan baja merupakan salah satu faktor penyebab menurunnya kekuatan struktur beton bertulang. Salah satu material yang dikembangkan mengatasi korosi adalah penggunaan material tulangan GFRP (Glass Fiber Reinforced Polymer). Penelitian ini bertujuan untuk menganalisa kapasitas lentur dan pola kegagalan balok beton tanpa selimut dengan menggunakan material tulangan GFRP bar.   Desain penelitian merupakan eksperimental laboratorium dengan rekapitulasi sebanyak 6 sampel yang terdiri dari 2 Balok beton menggunakan tulangan baja dengan selimut beton, 2 balok beton menggunakan tulangan GFRP bar dengan selimut beton, 2 balok beton menggunakan GFRP bar tanpa selimut beton. Metode pengujian dilakukan dengan dengan pengujian lentur statik monotonik dan Analisis data menggunakan uji kondisi retak awal dan kondisi ultimit.   Hasil penelitian ini menunjukkan bahwa kapasitas lentur pada balok dengan tulangan GFRP bar lebih besar dibandingkan dengan balok tulangan baja dan mampu meningkatkan kapasitas lentur balok dalam menahan beban sebesar 39.76 %, pola kegagalan beton yang terjadi pada balok tulangan baja mengalami kegagalan lentur tekan ditandai dengan retakan yang terjadi pada sisi tertekan dan membentuk retakan tegak dengan sumbu netral beton yang tertekan, sedangkan pada balok beton tulangan GFRP tanpa selimut mengalami kegagalan keruntuhan tekan geser dengan kondisi tulangan berdeformasi (bi-linear) dengan retak miring dan secara tiba-tiba menjalar menuju sumbu netral beton yang tertekan sehingga terjadilah keruntuhan secara tiba-tiba.     SADDAM HUSEIN.Failure mode analysis of concrete Beams Using GFRP rebar Without concrete cover (supervised by Rudi Djamaluddin and Rita Irmawaty)   Reinforced concrete that uses rebar steel in corrosive areas, are prone to damage or decreased strength due to corrosion. Corrosion in the steel reinforcement is one of the factors that decreasing strength of reinforced concrete. One of the materials developed to overcome corrosion is the use of GFRP (Glass Fiber Reinforced Polymer) reinforcement material. This study aims to analyze the flexural capacity and failure mode of concrete beams without concrete cover using material GFRP bar as reinforcement.   The research design was an experimental laboratory with a recapitulation of 6 samples consisting of 2 beams using steel reinforcement with concrete cover.2 concrete beams using reinforcement GFRP bar with concrete cover, 2 beams using GFRP bars without concrete cover. The  research method uses the monotonic static flexure and analyzing the data using the initial crack condition and ultimate conditions test.   The results of the research indicate the flexural capacity of the beams with GFRP bar reinforcement is higher than steel reinforcement beams and can increase 39.76% of the flexural capacity of the beams in holding loads , the failure mode analysis occurs in steel reinforcing beam experiences compressive failure. Failure was characterized  by cracks that occur on the depressing side and form an upright crack with the neutral axis of the compressed concrete, whereas in GFRP reinforced concrete beams without concrete cover, failure of shear compression with conditions of deformed reinforcement (bi-linear) with sloping cracks and suddenly spread towards the neutral axis of the compressed concrete so that there was a sudden collapse.


2021 ◽  
pp. 136943322110015
Author(s):  
Akram S. Mahmoud ◽  
Ziadoon M. Ali

When glass fibre-reinforced polymer (GFRP) bar splices are used in reinforced concrete sections, they affect the structural performance in two different ways: through the stress concentration in the section, and through the configuration of the GFRP–concrete bond. This study experimentally investigated a new method for increasing the bond strength of a GFRP lap (two GFRP bars connected together) using a carbon fibre-reinforced polymer (CFRP) sheet coated in epoxy resin. A new splicing method was investigated to quantify the effect of the bar surface bond on the development length, with reinforced concrete beams cast with laps in the concrete reinforcing bars at a known bending span length. Specimens were tested in four-point flexure tests to assess the strength capacity and failure mode. The results were summarised and compared within a standard lap made according to the ACI 318 specifications. The new method for splicing was more efficient for GFRP splice laps than the standard lap method. It could also be used for head-to-head reinforcement bar splices with the appropriate CFRP lapping sheets.


2014 ◽  
Vol 5 (4) ◽  
pp. 353-366 ◽  
Author(s):  
Mark Green ◽  
Kevin Hollingshead ◽  
Noureddine Bénichou

This paper considers the fire performance of concrete beams and columns that have been strengthened with fibre reinforced polymers (FRPs). Results from four recent full-scale tests are presented. A newly developed type of insulation was employed and the thickness of the insulation (15 to 20 mm) was approximately half that provided in earlier tests. All of the members survived four hours of the fire exposure. A conceptual model for design to determine when insulation is required is also presented. Further research needed to fully develop the conceptual model to a more practical design tool is outlined.


2001 ◽  
Vol 28 (4) ◽  
pp. 583-592 ◽  
Author(s):  
Amin Ghali ◽  
Tara Hall ◽  
William Bobey

To avoid excessive deflection most design codes specify the ratio (l/h)s, the span to minimum thickness of concrete members without prestressing. Use of the values of (l/h)s specified by the codes, in selecting the thickness of members, usually yields satisfactory results when the members are reinforced with steel bars. Fibre reinforced polymer (FRP) bars have an elastic modulus lower than that of steel. As a result, the values of (l/h)s specified in codes for steel-reinforced concrete would lead to excessive deflection if adopted for FRP-reinforced concrete. In this paper, an equation is developed giving the ratio (l/h)f for use with FRP bars in terms of (l/h)s and (εs/εf), where εs and εf are the maximum strain allowed at service in steel and FRP bars, respectively. To control the width of cracks, ACI 318-99 specifies εs = 1200 × 10–6 for steel bars having a modulus of elasticity, Es, of 200 GPa and a yield strength, fy, of 400 MPa. At present, there is no value specified for εf; a value is recommended in this paper.Key words: concrete, cracking, deflection, fibre reinforced polymers, flexural members, minimum thickness.


2021 ◽  
pp. 136943322098166
Author(s):  
Wang Xin ◽  
Shi Jianzhe ◽  
Ding Lining ◽  
Jin Yundong ◽  
Wu Zhishen

A combination of coral reef sand (CRS) concrete and fibre-reinforced polymer (FRP) bars provides an effective solution to the durability deficiency in conventional RC structures. This study experimentally investigates the durability of CRS concrete beams reinforced with basalt FRP (BFRP) bars in a simulated marine environment. Flexural tests are conducted on a total of fourteen CRS concrete beams aged in a cyclic wet-dry saline solution at temperatures of 25, 40 and 55°C. The variables comprise the types of reinforcement (steel and BFRP), the aging duration and the temperature. The failure modes, capacities, deflections and crack development of the beams are analysed and discussed. The results indicate that the ultimate load of the beams exhibits no degradation after aging, whereas the failure mode of the BFRP-CRS concrete beams transition from flexure to shear, which is caused by the degradation in the mechanical properties of the stirrups. The aged BFRP-CRS concrete beams show a substantial increase of over 70% in their initial stiffness compared with the control beams (beams without aging) and a substantial decrease in their crack width after aging due to the prolonged maturation of the concrete. Furthermore, a formula for calculating the shear capacity in the existing code is modified by a partial factor equal to 2, which can predict the capacity of a CRS concrete beam reinforced with BFRP bars in a marine environment.


Sign in / Sign up

Export Citation Format

Share Document