scholarly journals Transport Protocols for Wireless Sensor Networks: State-of-the-Art and Future Directions

2007 ◽  
Vol 3 (1) ◽  
pp. 119-133 ◽  
Author(s):  
Justin Jones ◽  
Mohammed Atiquzzaman

Characteristics of wireless sensor networks, specifically dense deployment, limited processing power, and limited power supply, provide unique design challenges at the transport layer. Message transmission between sensor nodes over a wireless medium is especially expensive. Care must be taken to design an efficient transport layer protocol that combines reliable message delivery and congestion control with minimal overhead and retransmission. Sensor networks are created using low cost, low power nodes. Wireless sensors are assumed to have a finite lifetime; care must be taken to design and implement transport layer algorithms that allow maximum network lifetime. In this paper we present current and future challenges in the design of transport layers for sensor networks. Current transport layer protocols are compared based on how they implement reliable message delivery, congestion control, and energy efficiency.

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Bhisham Sharma ◽  
Trilok C. Aseri

Design and implementation of wireless sensor Networks have gathered increased attention in recent years due to vast potential of sensor networks consisting of spatially distributed devices (motes) to cooperatively monitor physical or environmental conditions at different locations. Wireless sensor networks are built upon low cost nodes with limited battery (power), CPU clock (processing capacity), and memory modules (storage). Transport layer protocols applied to wireless sensor networks can handle the communications between the sink node and sensor nodes in upstream (sensor-to-sink) or downstream (sink-to-sensor) direction. In this paper, we present a comparative analysis of reliable and congestion aware transport layer protocols for wireless sensor networks and number of open issues that have to be carefully realized to make use of the wireless sensor networks more efficiently and to enhance their performance. We first list the characteristics of transport layer protocols. We then provide a summary of reliable and congestion aware transport layer protocols with their respective pros and cons and comparison of different protocols based on reliability, congestion control, and energy efficiency. Finally, we point out open research issues of transport layer protocols for wireless sensor networks, which need further attention to overcome the earlier mentioned challenges.


Author(s):  
Lina M. Pestana Leão de Brito ◽  
Laura M. Rodríguez Peralta

As with many technologies, defense applications have been a driver for research in sensor networks, which started around 1980 due to two important programs of the Defense Advanced Research Projects Agency (DARPA): the distributed sensor networks (DSN) and the sensor information technology (SensIT) (Chong & Kumar, 2003). However, the development of sensor networks requires advances in several areas: sensing, communication, and computing. The explosive growth of the personal communications market has driven the cost of radio devices down and has increased the quality. At the same time, technological advances in wireless communications and electronic devices (such as low-cost, low-power, small, simple yet efficient wireless communication equipment) have enabled the manufacturing of sensor nodes and, consequently, the development of wireless sensor networks (WSNs).


2012 ◽  
Vol 463-464 ◽  
pp. 261-265
Author(s):  
Fei Hui ◽  
Xiao Le Wang ◽  
Xin Shi

In this paper, hazardous materials transportation monitoring system is designed, implemented, and tested using Wireless Sensor Networks (WSNs). According to energy consumption and response time during clustering of Wireless Sensor Networks LEACH (Low Energy Adaptive Clustering Hierarchy) routing protocol, we proposed STATIC-LEACH routing protocol based on static clustering, it can effectively reduce energy consumption of the wireless sensor nodes and reduce network latency of cluster. With WSN and GSM/GPRS, low cost and easy deployment remote monitoring is possible without interfering with the operation of the transportation.


Aerospace ◽  
2006 ◽  
Author(s):  
Shashank Priya ◽  
Dan Popa ◽  
Frank Lewis

Wireless sensor networks (WSN) have tremendous potential in many environmental and structural health monitoring applications including, gas, temperature, pressure and humidity monitoring, motion detection, and hazardous materials detection. Recent advances in CMOS-technology, IC manufacturing, and networking utilizing Bluetooth communications have brought down the total power requirements of wireless sensor nodes to as low as a few hundred microwatts. Such nodes can be used in future dense ad-hoc networks by transmitting data 1 to 10 meters away. For communication outside 10 meter ranges, data must be transmitted in a multi-hop fashion. There are significant implications to replacing large transmission distance WSN with multiple low-power, low-cost WSN. In addition, some of the relay nodes could be mounted on mobile robotic vehicles instead of being stationary, thus increasing the fault tolerance, coverage and bandwidth capacity of the network. The foremost challenge in the implementation of a dense sensor network is managing power consumption for a large number of nodes. The traditional use of batteries to power sensor nodes is simply not scalable to dense networks, and is currently the most significant barrier for many applications. Self-powering of sensor nodes can be achieved by developing a smart architecture which utilizes all the environmental resources available for generating electrical power. These resources can be structural vibrations, wind, magnetic fields, light, sound, temperature gradients and water currents. The generated electric energy is stored in the matching media selected by the microprocessor depending upon the power magnitude and output impedance. The stored electrical energy is supplied on demand to the sensors and communications devices. This paper shows the progress in our laboratory on powering stationary and mobile untethered sensors using a fusion of energy harvesting approaches. It illustrates the prototype hardware and software required for their implementation including MEMS pressure and strain sensors mounted on mobile robots or stationary, power harvesting modules, interface circuits, algorithms for interrogating the sensor, wireless data transfer and recording.


The discovery and the use of many wireless technologies are paving way for new remote monitoring applications. The sensing devices are becoming popular because of their flexibility, performance, low cost and portability. Wireless Sensor Networks (WSN) is a good alternative to wired systems because of easy deployment in remote areas. Wireless Sensor Networks are used in different domains for various applications because of their salient characteristics like reduced power consumption, scalability, ability to respond immediately within a short span of time, reliability, dynamic in nature, low cost and easy installation. The main objective of this paper work is to find a suitable energy efficient, scalable and reliable communication protocols for intra-cluster and intercluster communication. Therefore the proposed research work follows three different phases. To achieve the desired results, the proposed research work concentrates on three protocols namely Energy Efficient and Reliable Clustering Routing Protocol (EERCRP), Energy Efficient and Reliable MAC Protocol (EERMAC) and Energy Efficient and Reliable Hybrid Transport Protocol (EERHTP).EERCRP and EERMAC are intra-cluster communication protocols that help in cluster formation and effective data sensing. EERHTP is a transport layer protocol that is used for inter-cluster communication. All the above protocols are evaluated using network simulator NS2 for their performance analysis. EERCRP is compared with PASCC and PCDCC which from the root level header node are existing congestion and queue based hybrid clustering protocols. The proposed EERCRP follows hierarchical cluster formation where the leader node is selected based on queue length, residual energy of the node and distance. It is efficient than the existing methods in terms of energy and reliability metrics.EERMAC is compared with existing MAC protocols namely SMAC, IEEE 802.11 EDCA and EA-MAC. SMAC follows traditional TDMA or CSMA method of data access. They are suitable only for periodic data sensing. The proposed EERMAC allows hybrid data sensing consisting of both periodic and event based data which are classified using priority levels. Event based data is assigned higher priority than periodic data. Queues are used for storing both types of data using various levels of threshold values. EERMAC uses CSMA/CA method for event based data. Variable TDMA method is used for event based and periodic data. EERHTP is a transport layer protocol that uses two types of reliability models namely ACK and NACK depending on the type of data. All the three protocols are evaluated both for energy and reliability metrics such as total energy consumption, residual energy comparison, energy consumption per packet, packet delivery ratio, delay, packet drop, jitter, throughput and network routing overhead. Thus it is concluded that all the three protocols are more optimal than the existing protocols and prove to be the best protocols for intracluster and inter-cluster communications.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhe Wei ◽  
Shuyan Yu ◽  
Wancheng Ma

In view of the spatiotemporal limitations of traditional healthcare services, the use of wireless communication has become one of the main development directions for the medical system. Compared with the traditional methods, applying the potential and benefits of the wireless sensor networks has more advantages such as low cost, simplicity, and flexible data acquisition. However, due to the limited resources of the individual wireless sensor nodes, traditional security solutions for defending against internal attacks cannot be directly used in healthcare based wireless sensor networks. To address this issue, a negative binomial distribution trust with energy consideration is proposed in this study. The proposed method is lightweight and suitable to be operated on the individual healthcare sensors. Simulations show that it can effectively deal with the internal attacks while taking the energy saving into consideration.


Author(s):  
Homero Toral-Cruz ◽  
Faouzi Hidoussi ◽  
Djallel Eddine Boubiche ◽  
Romeli Barbosa ◽  
Miroslav Voznak ◽  
...  

Wireless sensor networks (WSN) have become one of the most attractive research areas in many scientific fields for the last years. WSN consists of several sensor nodes that collect data in inaccessible areas and send them to the base station (BS) or sink. At the same time sensor networks have some special characteristics compared to traditional networks, which make it hard to deal with such kind of networks. The architecture of protocol stack used by the base station and sensor nodes, integrates power and routing awareness (i.e., energy-aware routing), integrates data with networking protocols (i.e., data aggregation), communicates power efficiently through the wireless medium, and promotes cooperative efforts of sensor nodes (i.e., task management plane).


2018 ◽  
Vol 7 (2.32) ◽  
pp. 136 ◽  
Author(s):  
Riaz Shaik ◽  
Shaik Shakeel Ahamad

Wireless sensor networks are becoming part of many of the research areas to address different issues related to technological and societal. So, The developments in wireless communication technology have made the deployment of  wireless sensor nodes connected through wireless medium, known as wireless sensor networks. Wireless sensor networks have numerous applications in many fields like military , environmental monitoring , health , industry etc.. wireless sensor networks have more benefits over Wired networks .Though there are several advantages of wireless networks, they are prone to security issues. . Security became a major concern for wireless sensor networks because of the wider application. So ,this paper addresses the critical security issues of wireless sensor networks that may encounter in the different layers of the communication protocols like OSI.This paper presents a detailed review on the security issues and its challenges of the wireless sensor networks.  


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Danyang Qin ◽  
Shuang Jia ◽  
Songxiang Yang ◽  
Erfu Wang ◽  
Qun Ding

Security problem is one of the most popular research fields in wireless sensor networks for both the application requirement and the resource-constrained essence. An effective and lightweight Authentication and Key Management Scheme (AKMS) is proposed in this paper to solve the problem of malicious nodes occurring in the process of networking and to offer a high level of security with low cost. For the condition that the mobile sensor nodes need to be authenticated, the keys in AKMS will be dynamically generated and adopted for security protection. Even when the keys are being compromised or captured, the attackers can neither use the previous keys nor misuse the authenticated nodes to cheat. Simulation results show that the proposed scheme provides more efficient security with less energy consumption for wireless sensor networks especially with mobile sensors.


2018 ◽  
Vol 2 (5) ◽  
Author(s):  
Sandhya Yadav ◽  
Deepak Tomar

Wireless Sensor Networks are used to perform distributed sensing in various fields, such as health, military, home etc. Sensing is done in order to have a better understanding of the behavior of the monitored entity or to monitor an environment for the occurrence of a set of possible events, so that proper action may be taken whenever necessary. In, wireless sensor networks, sensor nodes should communicate among themselves and do distributed computation over the sensed values to identify the occurrence of an event. The aim of this paper is to present the review of recent sensor network here we have discussion regarding the protocol stack of WSN and various network services and congestion control on WSN.


Sign in / Sign up

Export Citation Format

Share Document