scholarly journals Puf3p, a Pumilio family RNA binding protein, localizes to mitochondria and regulates mitochondrial biogenesis and motility in budding yeast

2007 ◽  
Vol 176 (2) ◽  
pp. 197-207 ◽  
Author(s):  
Luis J. García-Rodríguez ◽  
Anna Card Gay ◽  
Liza A. Pon

Puf3p binds preferentially to messenger RNAs (mRNAs) for nuclear-encoded mitochondrial proteins. We find that Puf3p localizes to the cytosolic face of the mitochondrial outer membrane. Overexpression of PUF3 results in reduced mitochondrial respiratory activity and reduced levels of Pet123p, a protein encoded by a Puf3p-binding mRNA. Puf3p levels are reduced during the diauxic shift and growth on a nonfermentable carbon source, conditions that stimulate mitochondrial biogenesis. These findings support a role for Puf3p in mitochondrial biogenesis through effects on mRNA interactions. In addition, Puf3p links the mitochore, a complex required for mitochondrial–cytoskeletal interactions, to the Arp2/3 complex, the force generator for actin-dependent, bud-directed mitochondrial movement. Puf3p, the mitochore, and the Arp2/3 complex coimmunoprecipitate and have two-hybrid interactions. Moreover, deletion of PUF3 results in reduced interaction between the mitochore and the Arp2/3 complex and defects in mitochondrial morphology and motility similar to those observed in Arp2/3 complex mutants. Thus, Puf3p is a mitochondrial protein that contributes to the biogenesis and motility of the organelle.

2017 ◽  
Vol 216 (3) ◽  
pp. 675-693 ◽  
Author(s):  
Désirée Schatton ◽  
David Pla-Martin ◽  
Marie-Charlotte Marx ◽  
Henriette Hansen ◽  
Arnaud Mourier ◽  
...  

Mitochondria are essential organelles that host crucial metabolic pathways and produce adenosine triphosphate. The mitochondrial proteome is heterogeneous among tissues and can dynamically change in response to different metabolic conditions. Although the transcriptional programs that govern mitochondrial biogenesis and respiratory function are well known, posttranscriptional regulatory mechanisms remain unclear. In this study, we show that the cytosolic RNA-binding protein clustered mitochondria homologue (CLUH) regulates the expression of a mitochondrial protein network supporting key metabolic programs required under nutrient deprivation. CLUH exerts its function by controlling the stability and translation of target messenger RNAs. In the absence of Cluh, mitochondria are severely depleted of crucial enzymes involved in catabolic energy-converting pathways. CLUH preserves oxidative mitochondrial function and glucose homeostasis, thus preventing death at the fetal–neonatal transition. In the adult liver, CLUH ensures maximal respiration capacity and the metabolic response to starvation. Our results shed new light on the posttranscriptional mechanisms controlling the expression of mitochondrial proteins and suggest novel strategies to tailor mitochondrial function to physiological and pathological conditions.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 711
Author(s):  
Yuan Qin ◽  
Wenting Jiang ◽  
Anqi Li ◽  
Meng Gao ◽  
Hanyu Liu ◽  
...  

Mitochondria are highly dynamic organelles, constantly undergoing shape changes, which are controlled by mitochondrial movement, fusion, and fission. Mitochondria play a pivotal role in various cellular processes under physiological and pathological conditions, including metabolism, superoxide generation, calcium homeostasis, and apoptosis. Abnormal mitochondrial morphology and mitochondrial protein expression are always closely related to the health status of cells. Analysis of mitochondrial morphology and mitochondrial protein expression in situ is widely used to reflect the abnormality of cell function in the chemical fixed sample. Paraformaldehyde (PFA), the most commonly used fixative in cellular immunostaining, still has disadvantages, including loss of antigenicity and disruption of morphology during fixation. We tested the effect of ethanol (ETHO), PFA, and glutaraldehyde (GA) fixation on cellular mitochondria. The results showed that 3% PFA and 1.5% GA (PFA-GA) combination reserved mitochondrial morphology better than them alone in situ in cells. Mitochondrial network and protein antigenicity were well maintained, indicated by preserved MitoTracker and mitochondrial immunostaining after PFA-GA fixation. Our results suggest that the PFA-GA combination is a valuable fixative for the study of mitochondria in situ.


2011 ◽  
Vol 194 (3) ◽  
pp. 473-488 ◽  
Author(s):  
Johannes Förtsch ◽  
Eric Hummel ◽  
Melanie Krist ◽  
Benedikt Westermann

The inheritance of mitochondria in yeast depends on bud-directed transport along actin filaments. It is a matter of debate whether anterograde mitochondrial movement is mediated by the myosin-related motor protein Myo2 or by motor-independent mechanisms. We show that mutations in the Myo2 cargo binding domain impair entry of mitochondria into the bud and are synthetically lethal with deletion of the YPT11 gene encoding a rab-type guanosine triphosphatase. Mitochondrial distribution defects and synthetic lethality were rescued by a mitochondria-specific Myo2 variant that carries a mitochondrial outer membrane anchor. Furthermore, immunoelectron microscopy revealed Myo2 on isolated mitochondria. Thus, Myo2 is an essential and direct mediator of bud-directed mitochondrial movement in yeast. Accumulating genetic evidence suggests that maintenance of mitochondrial morphology, Ypt11, and retention of mitochondria in the bud contribute to Myo2-dependent inheritance of mitochondria.


Genetics ◽  
2020 ◽  
Vol 215 (2) ◽  
pp. 463-482
Author(s):  
Manika Bhondeley ◽  
Zhengchang Liu

Mitochondrial biogenesis requires coordinated expression of genes encoding mitochondrial proteins, which in Saccharomyces cerevisiae is achieved in part via post-transcriptional control by the Pumilio RNA-binding domain protein Puf3. Puf3 binds to the 3′-UTR of many messenger RNAs (mRNAs) that encode mitochondrial proteins, regulating their turnover, translation, and/or mitochondrial targeting. Puf3 hyperphosphorylation correlates with increased mitochondrial biogenesis; however, the kinase responsible for Puf3 phosphorylation is unclear. Here, we show that the casein kinase I protein Hrr25 negatively regulates Puf3 by mediating its phosphorylation. An hrr25 mutation results in reduced phosphorylation of Puf3in vivo and a puf3 deletion mutation reverses growth defects of hrr25 mutant cells grown on medium with a nonfermentable carbon source. We show that Hrr25 directly phosphorylates Puf3, and that the interaction between Puf3 and Hrr25 is mediated through the N-terminal domain of Puf3 and the kinase domain of Hrr25. We further found that an hrr25 mutation reduces GFP expression from GFP reporter constructs carrying the 3′-UTR of Puf3 targets. Downregulation of GFP expression due to an hrr25 mutation can be reversed either by puf3Δ or by mutations to the Puf3-binding sites in the 3′-UTR of the GFP reporter constructs. Together, our data indicate that Hrr25 is a positive regulator of mitochondrial biogenesis by phosphorylating Puf3 and inhibiting its function in downregulating target mRNAs encoding mitochondrial proteins.


2003 ◽  
Vol 14 (11) ◽  
pp. 4618-4627 ◽  
Author(s):  
Istvan R. Boldogh ◽  
Dan W. Nowakowski ◽  
Hyeong-Cheol Yang ◽  
Haesung Chung ◽  
Sharon Karmon ◽  
...  

Previous studies indicate that two proteins, Mmm1p and Mdm10p, are required to link mitochondria to the actin cytoskeleton of yeast and for actin-based control of mitochondrial movement, inheritance and morphology. Both proteins are integral mitochondrial outer membrane proteins. Mmm1p localizes to punctate structures in close proximity to mitochondrial DNA (mtDNA) nucleoids. We found that Mmm1p and Mdm10p exist in a complex with Mdm12p, another integral mitochondrial outer membrane protein required for mitochondrial morphology and inheritance. This interpretation is based on observations that 1) Mdm10p and Mdm12p showed the same localization as Mmm1p; 2) Mdm12p, like Mdm10p and Mmm1p, was required for mitochondrial motility; and 3) all three proteins coimmunoprecipitated with each other. Moreover, Mdm10p localized to mitochondria in the absence of the other subunits. In contrast, deletion of MMM1 resulted in mislocalization of Mdm12p, and deletion of MDM12 caused mislocalization of Mmm1p. Finally, we observed a reciprocal relationship between the Mdm10p/Mdm12p/Mmm1p complex and mtDNA. Deletion of any one of the subunits resulted in loss of mtDNA or defects in mtDNA nucleoid maintenance. Conversely, deletion of mtDNA affected mitochondrial motility: mitochondria in cells without mtDNA move 2–3 times faster than mitochondria in cells with mtDNA. These observations support a model in which the Mdm10p/Mdm12p/Mmm1p complex links the minimum heritable unit of mitochondria (mtDNA and mitochondrial outer and inner membranes) to the cytoskeletal system that drives transfer of that unit from mother to daughter cells.


1973 ◽  
Vol 58 (3) ◽  
pp. 643-649 ◽  
Author(s):  
H. Schmitt ◽  
H. Grossfeld ◽  
U. Z. Littauer

Mitochondria isolated from cysts of Artemia salina (brine shrimp) were found to be devoid of cristae and to possess a low respiratory capability. Hydration of the cysts induces marked biochemical and morphological changes in the mitochondria. Their biogenesis proceeds in two stages. The first stage is completed within 1 h and is characterized by a rapid increase in the respiratory capability of the mitochondria, their cytochrome oxidase, cytochrome b, cytochrome c and perhaps some morphological changes. In the second stage there is an increase in the protein-synthesizing capacity of the mitochondria as well as striking changes in mitochondrial morphology leading to the formation of cristae.


1989 ◽  
Vol 9 (8) ◽  
pp. 3323-3331
Author(s):  
Y X Liu ◽  
C L Dieckmann

Saccharomyces cerevisiae strains are often host to several types of cytoplasmic double-stranded RNA (dsRNA) genomes, some of which are encapsidated by the L-A dsRNA product, an 86,000-dalton coat protein. Here we present the finding that nuclear recessive mutations in the NUC1 gene, which encodes the major nonspecific nuclease of yeast mitochondria, resulted in at least a 10-fold increase in amounts of the L-A dsRNA and its encoded coat protein. The effect of nuc1 mutations on L-A abundance was completely suppressed in strains that also hosted the killer-toxin-encoding M dsRNA. Both NUC1 and nuc1 strains containing the L-A genome exhibited an increase in coat protein abundance and a concomitant increase in L-A dsRNA when the cells were grown on a nonfermentable carbon source rather than on glucose, an effect independent of the increase in coat protein due to nuc1 mutations or to the absence of M. The increase in L-A expression in nuc1 strains was similar to that observed in strains with mutations in the nuclear gene encoding the most abundant outer mitochondrial membrane protein, porin. nuc1 mutations did not affect the level of porin in the mitochondrial outer membrane. Since the effect of mutations in nuc1 was to alter the copy number of the L-A coat protein genome rather than to change the level of the M toxin genome (as do mak and ski mutations), these mutations define a new class of nuclear genes affecting yeast dsRNA abundance.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Xuan Li ◽  
Jussara M do Carmo ◽  
Zhen Wang ◽  
Alexandre A da Sivla ◽  
Alan J Mouton ◽  
...  

Introduction: The underlying mechanisms by which empagliflozin (EMPA) and other sodium glucose co-transporter 2 (SGLT2) inhibitors attenuate heart failure (HF) are still poorly understood. However, this protection does not appear to be fully explained by their antihyperglycemic or diuretic effects. Hypothesis: EMPA attenuates HF by direct effects on the heart to improve its metabolism and function. Methods: C57BL/6J mice (4-6 months) were subjected to transverse aortic constriction (TAC) or sham surgeries. Two weeks after TAC, EMPA (10 mg/kg/day) or vehicle was administered daily for 4 additional weeks. Cardiac function was assessed by echocardiography and cardiac substrate metabolism measured in isolated perfused hearts. Transmission electron microscopy was used to evaluate mitochondrial morphology and molecular docking analysis to predict potential cardiac targets of EMPA. Results: EMPA increased survival and attenuated adverse left ventricle remodeling and cardiac fibrosis after TAC. EMPA also attenuated left ventricular systolic dysfunction (ejection fraction 51.6 vs. 40.2% p<0.05; fraction shortening 28.8 vs 18.4% p<0.05). EMPA rescued impaired glucose and fatty acid oxidation in failing hearts, while reducing glycolysis. Molecular docking analysis and isolated perfused heart experiments indicated that EMPA can directly bind glucose transporters in the heart to reduce glycolysis, and enhance AMP-activated protein kinase. EMPA treatment enhanced mitochondrial biogenesis, restored mitochondria cristae integrity, increased expression of endogenous antioxidants, and reduced cellular apoptosis caused by leakage of cytochrome C from mitochondria into the cytosol. These beneficial cardiac effects of EMPA occurred despite no alterations in fasting blood glucose, body weight, or daily urine volume. Conclusions. Our study demonstrated that EMPA may directly bind glucose transporters and reduce excessive glycolysis in failing hearts. EMPA enhanced mitochondrial biogenesis, improved mitochondrial oxidative phosphorylation, and reduced mitochondria-mediated apoptosis, thereby attenuating cardiac dysfunction and progression of HF.


2020 ◽  
Author(s):  
Purva Karia ◽  
Keiko Yoshioka ◽  
Wolfgang Moeder

ABSTRACTThe role of mitochondria in programmed cell death (PCD) during animal growth and development is well documented, but much less is known for plants. We previously showed that the Arabidopsis thaliana triphosphate tunnel metalloenzyme (TTM) proteins TTM1 and TTM2 are tail-anchored proteins that localize in the mitochondrial outer membrane and participate in PCD during senescence and immunity, respectively. Here, we show that TTM1 is specifically involved in senescence induced by abscisic acid (ABA). Moreover, phosphorylation of TTM1 by multiple mitogen-activated protein kinases (MAPKs) regulates its function and turnover. A combination of proteomics and in vitro kinase assays revealed three major phosphorylation sites of TTM1 (S10, S437, and S490), which are phosphorylated upon perception of senescence cues such as ABA and prolonged darkness. S437 is phosphorylated by the MAP kinases MPK3 and MPK4, and S437 phosphorylation is essential for TTM1 function in senescence. These MPKs, together with three additional MAP kinases (MPK1, MPK7, and MPK6), phosphorylate S10 and S490, marking TTM1 for protein turnover, which likely prevents uncontrolled cell death. Taken together, our results show that multiple MPKs regulate the function and turnover of the mitochondrial protein TTM1 during senescence-related PCD, revealing a novel link between mitochondria and PCD.SummaryEmail addresses: [email protected]


Sign in / Sign up

Export Citation Format

Share Document