scholarly journals Organellophagy: Eliminating cellular building blocks via selective autophagy

2014 ◽  
Vol 205 (4) ◽  
pp. 435-445 ◽  
Author(s):  
Koji Okamoto

Maintenance of organellar quality and quantity is critical for cellular homeostasis and adaptation to variable environments. Emerging evidence demonstrates that this kind of control is achieved by selective elimination of organelles via autophagy, termed organellophagy. Organellophagy consists of three key steps: induction, cargo tagging, and sequestration, which involve signaling pathways, organellar landmark molecules, and core autophagy-related proteins, respectively. In addition, posttranslational modifications such as phosphorylation and ubiquitination play important roles in recruiting and tailoring the autophagy machinery to each organelle. The basic principles underlying organellophagy are conserved from yeast to mammals, highlighting its biological relevance in eukaryotic cells.

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1502
Author(s):  
Johannes M. Parikka ◽  
Karolina Sokołowska ◽  
Nemanja Markešević ◽  
J. Jussi Toppari

The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and error-free assembly processes. Most of these structures are, however, limited in size to a nanometer scale. To overcome this limitation, a plethora of studies has been carried out to form larger structures using DNA assemblies as building blocks or tiles. Therefore, DNA tiles have become one of the most widely used building blocks for engineering large, intricate structures with nanometer precision. To create even larger assemblies with highly organized patterns, scientists have developed a variety of structural design principles and assembly methods. This review first summarizes currently available DNA tile toolboxes and the basic principles of lattice formation and hierarchical self-assembly using DNA tiles. Special emphasis is given to the forces involved in the assembly process in liquid-liquid and at solid-liquid interfaces, and how to master them to reach the optimum balance between the involved interactions for successful self-assembly. In addition, we focus on the recent approaches that have shown great potential for the controlled immobilization and positioning of DNA nanostructures on different surfaces. The ability to position DNA objects in a controllable manner on technologically relevant surfaces is one step forward towards the integration of DNA-based materials into nanoelectronic and sensor devices.


2016 ◽  
Vol 311 (3) ◽  
pp. C351-C362 ◽  
Author(s):  
Joëlle Botti-Millet ◽  
Anna Chiara Nascimbeni ◽  
Nicolas Dupont ◽  
Etienne Morel ◽  
Patrice Codogno

Macroautophagy (hereafter called autophagy) is a vacuolar lysosomal pathway for degradation of intracellular material in eukaryotic cells. Autophagy plays crucial roles in tissue homeostasis, in adaptation to stress situations, and in immune and inflammatory responses. Alteration of autophagy is associated with cancer, diabetes and obesity, cardiovascular disease, neurodegenerative disease, autoimmune disease, infection, and chronic inflammatory disease. Autophagy is controlled by autophagy-related (ATG) proteins that act in a coordinated manner to build up the initial autophagic vacuole named the autophagosome. It is now known that the activities of ATG proteins are modulated by posttranslational modifications such as phosphorylation, ubiquitination, and acetylation. Moreover, transcriptional and epigenetic controls are involved in the regulation of autophagy in stress situations. Here we summarize and discuss how posttranslational modifications and transcriptional and epigenetic controls regulate the involvement of autophagy in the proteostasis network.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Garima Sharma ◽  
Ashish Ranjan Sharma ◽  
Eun-Min Seo ◽  
Ju-Suk Nam

The Wnt signaling pathway is mediated by a family of secreted glycoproteins through canonical and noncanonical mechanism. The signaling pathways are regulated by various modulators, which are classified into two classes on the basis of their interaction with either Wnt or its receptors. Secreted frizzled-related proteins (sFRPs) are the member of class that binds to Wnt protein and antagonizes Wnt signaling pathway. The other class consists of Dickkopf (DKK) proteins family that binds to Wnt receptor complex. The present review discusses the disease related association of various polymorphisms in Wnt signaling modulators. Furthermore, this review also highlights that some of the sFRPs and DKKs are unable to act as an antagonist for Wnt signaling pathway and thus their function needs to be explored more extensively.


2017 ◽  
Vol 24 (10) ◽  
pp. T147-T159 ◽  
Author(s):  
Zijie Feng ◽  
Jian Ma ◽  
Xianxin Hua

There is a trend of increasing prevalence of neuroendocrine tumors (NETs), and the inherited multiple endocrine neoplasia type 1 (MEN1) syndrome serves as a genetic model to investigate how NETs develop and the underlying mechanisms. Menin, encoded by the MEN1 gene, at least partly acts as a scaffold protein by interacting with multiple partners to regulate cellular homeostasis of various endocrine organs. Menin has multiple functions including regulation of several important signaling pathways by controlling gene transcription. Here, we focus on reviewing the recent progress in elucidating the key biochemical role of menin in epigenetic regulation of gene transcription and cell signaling, as well as posttranslational regulation of menin itself. In particular, we will review the progress in studying structural and functional interactions of menin with various histone modifiers and transcription factors such as MLL, PRMT5, SUV39H1 and other transcription factors including c-Myb and JunD. Moreover, the role of menin in regulating cell signaling pathways such as TGF-beta, Wnt and Hedgehog, as well as miRNA biogenesis and processing will be described. Further, the regulation of the MEN1 gene transcription, posttranslational modifications and stability of menin protein will be reviewed. These various modes of regulation by menin as well as regulation of menin by various biological factors broaden the view regarding how menin controls various biological processes in neuroendocrine organ homeostasis.


2002 ◽  
Vol 13 (12) ◽  
pp. 4221-4230 ◽  
Author(s):  
Liyu Tu ◽  
Tung-Tien Sun ◽  
Gert Kreibich

Much of the lower urinary tract, including the bladder, is lined by a stratified urothelium forming a highly differentiated, superficial umbrella cell layer. The apical plasma membrane as well as abundant cytoplasmic fusiform vesicles of the umbrella cells is covered by two-dimensional crystals that are formed by four membrane proteins named uroplakins (UPs) Ia, Ib, II, and III. UPs are synthesized on membrane-bound polysomes, and after several co- and posttranslational modifications they assemble into planar crystals in a post-Golgi vesicular compartment. Distension of the bladder may cause fusiform vesicles to fuse with the apical plasma membrane. We have investigated the early stages of uroplakin assembly by expressing the four uroplakins in 293T cells. Transfection experiments showed that, when expressed individually, only UPIb can exit from the endoplasmic reticulum (ER) and move to the plasma membrane, whereas UPII and UPIII reach the plasma membrane only when they form heterodimeric complexes with UPIa and UPIb, respectively. Heterodimer formation in the ER was confirmed by pulse-chase experiment followed by coimmunoprecipitation. Our results indicate that the initial building blocks for the assembly of crystalline uroplakin plaques are heterodimeric uroplakin complexes that form in the ER.


2014 ◽  
Vol 322 (1) ◽  
pp. 108-121 ◽  
Author(s):  
Alessandro Castorina ◽  
Soraya Scuderi ◽  
Agata Grazia D’Amico ◽  
Filippo Drago ◽  
Velia D’Agata

2014 ◽  
Vol 395 (7-8) ◽  
pp. 881-889 ◽  
Author(s):  
Christian Löw ◽  
Esben M. Quistgaard ◽  
Michael Kovermann ◽  
Madhanagopal Anandapadamanaban ◽  
Jochen Balbach ◽  
...  

Abstract Protein phosphatase 2A (PP2A) is a highly abundant heterotrimeric Ser/Thr phosphatase involved in the regulation of a variety of signaling pathways. The PP2A phosphatase activator (PTPA) is an ATP-dependent activation chaperone, which plays a key role in the biogenesis of active PP2A. The C-terminal tail of the catalytic subunit of PP2A is highly conserved and can undergo a number of posttranslational modifications that serve to regulate the function of PP2A. Here we have studied structurally the interaction of PTPA with the conserved C-terminal tail of the catalytic subunit carrying different posttranslational modifications. We have identified an additional interaction site for the invariant C-terminal tail of the catalytic subunit on PTPA, which can be modulated via posttranslational modifications. We show that phosphorylation of Tyr307PP2A-C or carboxymethylation of Leu309PP2A-C abrogates or diminishes binding of the C-terminal tail, whereas phosphorylation of Thr304PP2A-C is of no consequence. We suggest that the invariant C-terminal residues of the catalytic subunit can act as affinity enhancer for different PP2A interaction partners, including PTPA, and a different ‘code’ of posttranslational modifications can favour interactions to one subunit over others.


2014 ◽  
Vol 207 (1) ◽  
pp. 91-105 ◽  
Author(s):  
Chikara Tanaka ◽  
Li-Jing Tan ◽  
Keisuke Mochida ◽  
Hiromi Kirisako ◽  
Michiko Koizumi ◽  
...  

In selective autophagy, degradation targets are specifically recognized, sequestered by the autophagosome, and transported into the lysosome or vacuole. Previous studies delineated the molecular basis by which the autophagy machinery recognizes those targets, but the regulation of this process is still poorly understood. In this paper, we find that the highly conserved multifunctional kinase Hrr25 regulates two distinct selective autophagy–related pathways in Saccharomyces cerevisiae. Hrr25 is responsible for the phosphorylation of two receptor proteins: Atg19, which recognizes the assembly of vacuolar enzymes in the cytoplasm-to-vacuole targeting pathway, and Atg36, which recognizes superfluous peroxisomes in pexophagy. Hrr25-mediated phosphorylation enhances the interactions of these receptors with the common adaptor Atg11, which recruits the core autophagy-related proteins that mediate the formation of the autophagosomal membrane. Thus, this study introduces regulation of selective autophagy as a new role of Hrr25 and, together with other recent studies, reveals that different selective autophagy–related pathways are regulated by a uniform mechanism: phosphoregulation of the receptor–adaptor interaction.


2013 ◽  
Vol 10 (80) ◽  
pp. 20120740 ◽  
Author(s):  
Tais A. P. F. Doll ◽  
Senthilkumar Raman ◽  
Raja Dey ◽  
Peter Burkhard

Nanoscale assemblies are a unique class of materials, which can be synthesized from inorganic, polymeric or biological building blocks. The multitude of applications of this class of materials ranges from solar and electrical to uses in food, cosmetics and medicine. In this review, we initially highlight characteristic features of polymeric nanoscale assemblies as well as those built from biological units (lipids, nucleic acids and proteins). We give special consideration to protein nanoassemblies found in nature such as ferritin protein cages, bacterial microcompartments and vaults found in eukaryotic cells and designed protein nanoassemblies, such as peptide nanofibres and peptide nanotubes. Next, we focus on biomedical applications of these nanoscale assemblies, such as cell targeting, drug delivery, bioimaging and vaccine development. In the vaccine development section, we report in more detail the use of virus-like particles and self-assembling polypeptide nanoparticles as new vaccine delivery platforms.


Sign in / Sign up

Export Citation Format

Share Document