scholarly journals Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles

2015 ◽  
Vol 211 (1) ◽  
pp. 191-203 ◽  
Author(s):  
Nagaraju Dhanyasi ◽  
Dagan Segal ◽  
Eyal Shimoni ◽  
Vera Shinder ◽  
Ben-Zion Shilo ◽  
...  

Fusion of individual myoblasts to form multinucleated myofibers constitutes a widely conserved program for growth of the somatic musculature. We have used electron microscopy methods to study this key form of cell–cell fusion during development of the indirect flight muscles (IFMs) of Drosophila melanogaster. We find that IFM myoblast–myotube fusion proceeds in a stepwise fashion and is governed by apparent cross talk between transmembrane and cytoskeletal elements. Our analysis suggests that cell adhesion is necessary for bringing myoblasts to within a minimal distance from the myotubes. The branched actin polymerization machinery acts subsequently to promote tight apposition between the surfaces of the two cell types and formation of multiple sites of cell–cell contact, giving rise to nascent fusion pores whose expansion establishes full cytoplasmic continuity. Given the conserved features of IFM myogenesis, this sequence of cell interactions and membrane events and the mechanistic significance of cell adhesion elements and the actin-based cytoskeleton are likely to represent general principles of the myoblast fusion process.

2015 ◽  
Vol 209 (3) ◽  
pp. 367-376 ◽  
Author(s):  
Katharina Grikscheit ◽  
Tanja Frank ◽  
Ying Wang ◽  
Robert Grosse

Epithelial integrity is vitally important, and its deregulation causes early stage cancer. De novo formation of an adherens junction (AJ) between single epithelial cells requires coordinated, spatial actin dynamics, but the mechanisms steering nascent actin polymerization for cell–cell adhesion initiation are not well understood. Here we investigated real-time actin assembly during daughter cell–cell adhesion formation in human breast epithelial cells in 3D environments. We identify formin-like 2 (FMNL2) as being specifically required for actin assembly and turnover at newly formed cell–cell contacts as well as for human epithelial lumen formation. FMNL2 associates with components of the AJ complex involving Rac1 activity and the FMNL2 C terminus. Optogenetic control of Rac1 in living cells rapidly drove FMNL2 to epithelial cell–cell contact zones. Furthermore, Rac1-induced actin assembly and subsequent AJ formation critically depends on FMNL2. These data uncover FMNL2 as a driver for human epithelial AJ formation downstream of Rac1.


2021 ◽  
Author(s):  
Brent M. Bijonowski

Cell–cell adhesions are fundamental in regulating multicellular behavior and lie at the center of many biological processes from embryoid development to cancer development. Therefore, controlling cell–cell adhesions is fundamental to gaining insight into these phenomena and gaining tools that would help in the bioartificial construction of tissues. For addressing biological questions as well as bottom-up tissue engineering the challenge is to have multiple cell types self-assemble in parallel and organize in a desired pattern from a mixture of different cell types. Ideally, different cell types should be triggered to self-assemble with different stimuli without interfering with the other and different types of cells should sort out in a multicellular mixture into separate clusters. In this chapter, we will summarize the developments in photoregulation cell–cell adhesions using non-neuronal optogenetics. Among the concepts, we will cover is the control of homophylic and heterophilic cell–cell adhesions, the independent control of two different types with blue or red light and the self-sorting of cells into distinct structures and the importance of cell–cell adhesion dynamics. These tools will give an overview of how the spatiotemporal regulation of cell–cell adhesion gives insight into their role and how tissues can be assembled from cells as the basic building block.


2017 ◽  
Vol 114 (29) ◽  
pp. E5835-E5844 ◽  
Author(s):  
Caitlin Collins ◽  
Aleksandra K. Denisin ◽  
Beth L. Pruitt ◽  
W. James Nelson

Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin–dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell–cell adhesion assay and live cell imaging of cell–cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell–cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell–cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell–cell adhesion.


2002 ◽  
Vol 115 (16) ◽  
pp. 3331-3340 ◽  
Author(s):  
Carla Perego ◽  
Cristina Vanoni ◽  
Silvia Massari ◽  
Andrea Raimondi ◽  
Sandra Pola ◽  
...  

As little is known about the role of cadherin-mediated cell-cell adhesion in astrocytes and its alteration in migrating and invasive glioblastomas, we investigated its molecular composition and organisation in primary cultured astrocytes and the T98G and U373MG glioblastoma cell lines. Biochemical and morphological analysis indicated that all three cell types express all of the structural components of the adhesion system, including the LIN-7 PDZ protein,a novel component involved in the organisation of the junctional domain in epithelia and neurons. However, only the astrocytes and T98G cells generated and maintained mature adhesive junctional domains to which LIN-7 was recruited. Alterations in the junctional domain of U373MG cells were associated with higher motility in a poly-L-lysine migration assay. When the T98G cells were cultured on Matrigel matrix, they acquired invasive properties but, despite unchanged cadherin adhesion system protein levels, the invasive T98G cell-cell contacts failed to accumulate LIN-7 and failed to mature. These results identify the LIN-7 PDZ protein as a marker of cell adhesion maturity and cell invasion and indicate that instability and disorganisation of cadherin-mediated junctions rather than reduced expression of cadherin-catenin system components are required to promote migration and invasiveness in glioblastoma cell lines.


1996 ◽  
Vol 109 (5) ◽  
pp. 1009-1016
Author(s):  
S. Funamoto ◽  
H. Ochiai

The gp64 protein of Polysphondylium pallidum has been shown to mediate EDTA-stable cell-cell adhesion. To explore the functional role of gp64, we made an antisense RNA expression construct designed to prevent the gene expression of gp64; the construct was introduced into P. pallidum cells and the transformants were characterised. The antisense RNA-expressing clone L3mc2 which had just been harvested at the growth phase tended to re-form in aggregates smaller in size than did the parental cells in either the presence or absence of 10 mM EDTA. In contrast, 6.5-hour starved L3mc2 cells remained considerably dissociated from each other after 5 minutes gyrating, although aggregation gradually increased by 50% during a further 55 minutes gyrating in the presence of 10 mM EDTA. Correspondingly, L3mc2 lacked specifically the cell-cell adhesion protein, gp64. We therefore conclude that the gp64 protein is involved in forming the EDTA-resistant cell-cell contact. In spite of the absence of gp64, L3mc2 exhibited normal developmental processes, a fact which demonstrates that another cell-cell adhesion system exists in the development of Polysphondylium. This is the first report in which an antisense RNA technique was successfully applied to Polysphondylium.


1998 ◽  
Vol 111 (8) ◽  
pp. 1071-1080 ◽  
Author(s):  
S.M. Reuver ◽  
C.C. Garner

Members of the SAP family of synapse-associated proteins have recently emerged as central players in the molecular organization of synapses. In this study, we have examined the mechanism that localizes one member, SAP97, to sites of cell-cell contact. Utilizing epithelial CACO-2 cells and fibroblast L-cells as model systems, we demonstrate that SAP97 is associated with the submembranous cortical cytoskeleton at cell-cell adhesion sites. Furthermore, we show that its localization into this structure is triggered by E-cadherin. Although SAP97 can be found in an E-cadherin/catenin adhesion complex, this interaction seems to be mediated by the attachment of SAP97 to the cortical cytoskeleton. Our results are consistent with a model in which SAP97 is recruited to sites of cell-cell contact via an E-cadherin induced assembly of the cortical cytoskeleton.


Blood ◽  
1997 ◽  
Vol 89 (2) ◽  
pp. 541-549 ◽  
Author(s):  
Emanuela Napoleone ◽  
Angelomaria Di Santo ◽  
Roberto Lorenzet

Abstract Monocytes and endothelial cells interact at sites of vascular injury during inflammatory response, thrombosis, and development of atherosclerotic lesions. Such interactions result in modulation of several biological functions of the two cell types. Because both cells, on appropriate stimulation, synthesize tissue factor (TF), we examined the effect of human umbilical vein endothelial cell (HUVEC)/monocyte coculture on the expression of TF. We found that the coincubation resulted in TF generation, which was maximal at 4 hours, increased with increasing numbers of monocytes, and required mRNA and protein synthesis. Supernatant from HUVEC/monocyte coculture induced TF activity in HUVECs, but not in monocytes, indicating that HUVEC were the cells responsible for the activity, and that soluble mediators were involved. Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), well-known inducers of TF in HUVECs, were found in the supernatant from the coculture, and specific antibodies directed against either cytokine inhibited TF generation. The need of IL-1β and TNF-α synthesis in order to elicit TF expression was also suggested by the delay observed in TF mRNA formation and TF activity generation when monocytes were incubated with HUVECs. IL-1β and TNF-α antigen levels in the coculture supernatant, and, consequently, HUVEC TF expression, were inhibited in the presence of anti-CD18 monoclonal antibody. These findings emphasize the role of cell-cell contact and cross-talk in the procoagulant activity, which could be responsible for the thromboembolic complications observed in those vascular disorders in which monocyte infiltration is a common feature.


Author(s):  
Peter Sonderegger ◽  
Stefan Kunz ◽  
Christoph Rader ◽  
Daniel M. Suter ◽  
Esther T. Stoeckli

1989 ◽  
Vol 109 (4) ◽  
pp. 1807-1815 ◽  
Author(s):  
R Kaufmann ◽  
D Frösch ◽  
C Westphal ◽  
L Weber ◽  
C E Klein

The integrin VLA-3 is a cell surface receptor, which binds to fibronectin, laminin, collagen type I and VI (Takada, Y., E. A. Wayner, W. G. Carter, and M. E. Hemler. 1988. J. Cell. Biochem. 37:385-393) and is highly expressed in substrate adherent cultures of almost all human cell types. The ligand specificity of VLA-3 and the inhibition of cell adhesion by anti-VLA-3 monoclonal antibodies suggest its involvement in cell-substrate interaction. In normal tissues, VLA-3 is restricted to few cell types, notably the kidney glomeruli and basal cells of the epidermis. In the epidermis, VLA-3 is generally strongly expressed on the entire plasma membrane of basal cells and is not polarized towards the basement membrane (Klein, C. E., C. Cardon-Cardo, R. Soehnchen, R. J. Cote, H. F. Oettgen, M. Eisinger, and L. J. Old. 1987. J. Invest. Dermatol. 89:500-507). Based on this finding we speculated that, in addition to a role of VLA-3 for adhesion of cells to substrate, it could also be relevant for cell-cell interaction. To investigate this, we ultrastructurally localized VLA-3 on the surface of cultured cells by immunoelectron microscopy. In accordance with our concept, we found VLA-3 strongly associated with intercellular contact sites. Interestingly, very little immunoreactivity was detected at the under-surface of cells which had been cultured for 18-32 h. This observation was unexpected but is consistent with previous findings (Kantor, R. R. S., M. J. Mattes, K. D. Lloyd, L. J. Old, and A. P. Albino. 1987. J. Biol. Chem. 262:15158-15165) which suggest that the association of VLA-3 with the basal surface of substrate adherent tumor cells is a late event occurring after days of culture under confluent conditions. However, we cannot formally rule out VLA-3 expression at the undersurface of cells under our experimental conditions, since VLA-3 molecules at this location could be inaccessible for in situ labeling of unfixed cells because of spatial interferences. In conclusion, our results demonstrate the expression of VLA-3 at intercellular contact sites of cultured cells supporting the concept that it may be relevant for intercellular interactions also.


1997 ◽  
Vol 8 (7) ◽  
pp. 1329-1341 ◽  
Author(s):  
N Sheibani ◽  
P J Newman ◽  
W A Frazier

Expression of thrombospondin-1 (TS1) in polyoma middle-sized T (tumor)-transformed mouse brain endothelial cells (bEND.3) restores a normal phenotype and suppresses their ability to form hemangiomas in mice. We show that TS1 expression results in complete suppression of platelet-endothelial cell adhesion molecule-1 (PECAM-1) expression and altered cell-cell interactions in bEND.3 cells. To further investigate the role of PECAM-1 in regulation of endothelial cell-cell interactions and morphogenesis, we expressed human (full length) or murine (delta 15) PECAM-1 isoforms in TS1-transfected bEND.3 (bEND/TS) cells. Expression of either human or murine PECAM-1 resulted in an enhanced ability to organize and form networks of cords on Matrigel, an effect that was specifically blocked by antibodies to PECAM-1. Anti-PECAM-1 antibodies also inhibited tube formation in Matrigel by normal human umbilical vein endothelial cells. However, PECAM-1-transfected bEND/TS cells did not regain the ability to form hemangiomas in mice and the expressed PECAM-1, unlike the endogenous PECAM-1 expressed in bEND.3 cells, failed to localize to sites of cell-cell contact. This may be, in part, attributed to the different isoforms of PECAM-1 expressed in bEND.3 cells. Using reverse transcription-polymerase chain reaction, we determined that bEND.3 cells express mRNA encoding six different PECAM-1 isoforms, the isoform lacking both exons 14 and 15 (delta 14&15) being most abundant. Expression of the murine delta 14&15 PECAM-1 isoform in bEND/TS cells resulted in a similar phenotype to that described for the full-length human or murine delta 15 PECAM-1 isoform. The delta 14&15 isoform, despite the lack of exon 14, failed to localize to sites of cell-cell contact even in clones that expressed it at very high levels. Thus, contrary to recent reports, lack of exon 14 is not sufficient to result in junctional localization of PECAM-1 isoforms in bEND/TS cells.


Sign in / Sign up

Export Citation Format

Share Document