scholarly journals Glypican 4 mediates Wnt transport between germ layers via signaling filopodia

2021 ◽  
Vol 220 (12) ◽  
Author(s):  
Bo Hu ◽  
Juan J. Rodriguez ◽  
Anurag Kakkerla Balaraju ◽  
Yuanyuan Gao ◽  
Nhan T. Nguyen ◽  
...  

Glypicans influence signaling pathways by regulating morphogen trafficking and reception. However, the underlying mechanisms in vertebrates are poorly understood. In zebrafish, Glypican 4 (Gpc4) is required for convergence and extension (C&E) of both the mesoderm and endoderm. Here, we show that transgenic expression of GFP-Gpc4 in the endoderm of gpc4 mutants rescued C&E defects in all germ layers. The rescue of mesoderm was likely mediated by Wnt5b and Wnt11f2 and depended on signaling filopodia rather than on cleavage of the Gpc4 GPI anchor. Gpc4 bound both Wnt5b and Wnt11f2 and regulated formation of the filopodia that transport Wnt5b and Wnt11f2 to neighboring cells. Moreover, this rescue was suppressed by blocking signaling filopodia that extend from endodermal cells. Thus, GFP-Gpc4–labeled protrusions that emanated from endodermal cells transported Wnt5b and Wnt11f2 to other germ layers, rescuing the C&E defects caused by a gpc4 deficiency. Our study reveals a new mechanism that could explain in vivo morphogen distribution involving Gpc4.

2020 ◽  
Author(s):  
Bo Hu ◽  
Anurag Kakkerla Balaraju ◽  
Juan J Rodriguez ◽  
Yuanyuan Gao ◽  
Nhan T Nguyen ◽  
...  

AbstractGlypicans influence signaling pathways by regulating morphogen trafficking and reception. However, the underlying mechanisms in vertebrates are poorly understood. In zebrafish, Glypican 4 (Gpc4) is required for convergence and extension (C&E) of both the mesoderm and endoderm. Here we show that transgenic expression of GFP-Gpc4 in the endoderm of gpc4 mutants rescues C&E defects in all germ layers. The rescue of mesoderm was likely mediated by Wnt5b and Wnt11f2, and depended on signaling filopodia rather than on cleavage of the Gpc4 GPI anchor. Gpc4 bound Wnt5b and regulated formation of the filopodia that transport Wnt5b to neighboring cells. Blocking signaling filopodia that extend from endodermal cells suppressed this rescue. Thus, endodermal signaling filopodia that expressed GFP-Gpc4 transported Wnt5b, and likely Wnt11f2, to other germ layers, rescuing the C&E defects caused by a gpc4 deficiency. Our study reveals a new mechanism that could explain in vivo morphogen distribution involving Gpc4.


2017 ◽  
Vol 41 (6) ◽  
pp. 2307-2318 ◽  
Author(s):  
Xiao-Jian Jia ◽  
Xi Li ◽  
Feng Wang ◽  
Han-Qing Liu ◽  
Da-Jun Zhang

Background/Aims: This study aimed to investigate the anti-inflammatory activity of Berbamine (BER), a bisbenzylisoquinoline alkaloid extracted from Berberis amurensis (Xiao Bo An), and the underlying mechanisms. Methods: Macrophages and neutrophils were treated with BER in vitro and stimulated with LPS and fMLP. The effects of BER on the expression of pro-inflammatory mediators in macrophages were evaluated with quantitative RT-PCR and ELISA. The effects of BER on the activation and superoxide release of neutrophils were determined with flow cytometry and WST-1 reduction test. The inhibitory effects of BER on the activation of signaling pathways related to inflammatory response in macrophages were evaluated by western blot analysis. In addition, a mouse peritonitis model was made by peritoneal injection of thioglycollate medium and anti-inflammatory effects of BER were investigated in vivo by quantitative analysis of pro-inflammatory factor production and leukocyte exudation. Results: BER significantly inhibited inflammatory factor expression by LPS-stimulated macrophages and suppressed activation and superoxide release of fMLP-stimulated neutrophils. In the mouse peritonitis model, BER significantly inhibited the activation of macrophages and exudation of neutrophils. According to analysis, BER significantly suppressed phosphorylation of NF-κB and MAPK (JNK and ERK1/2) signaling pathways in LPS-stimulated macrophages. Conclusions: Collectively, data from this study suggest that BER has anti-inflammatory potential, which is effected via inhibition of NF-κB and MAPK signaling pathways, and thus holds promise for treatment of inflammatory disease.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhengyuan Wu ◽  
Zhiwei Luan ◽  
Xiaohan Zhang ◽  
Kai Zou ◽  
Shiting Ma ◽  
...  

Abstract Osteoarthritis (OA) is a degenerative disease of the cartilage that is prevalent in the middle-aged and elderly demography. Polydatin (PD), a natural resveratrol glucoside, has shown significant anti-inflammatory and anti-arthritic potential in previous studies. This study was designed to evaluate the therapeutic properties of PD in vitro and in vivo, and elucidate their underlying mechanisms. The expression levels of all relevant factors were evaluated by qRT-PCR, western blotting, and immunohistochemistry (IHC) where suitable. Reactive oxygen species (ROS) and apoptosis were analyzed using the suitable probes and flow cytometry. The histological evidence of cartilage was assessed in rat models, moreover, the several serum cytokines levels and autophagy levels were evaluated. The result showed PD displayed significant chondro-protective effects, inferred in terms of reduced inflammation and cartilage degradation, apoptosis inhibition, and lower ROS production. The protective effects were attenuated by the autophagy inhibitor 3-MA, indicating a mediating role of autophagy in PD action. Mechanistically, PD exerted its effects by inhibiting the MAPK and PI3K/Akt signaling pathways which led to the down-regulation of mTOR. In conclusion, PD protects against cartilage degeneration by activating the autophagy flux in the chondrocytes via the MAPK and PI3K/Akt signaling pathways.


2020 ◽  
Author(s):  
Xiao-Zhong Liao ◽  
Ying Gao ◽  
Hong-Wei Zhao ◽  
Mi Zhou ◽  
Dan-Lei Chen ◽  
...  

Abstract Background: Cisplatin (DDP) is the firs-line chemotherapeutic agent for the treatment of NSCLC. However, DDP resistance limits their usage to maximize the antineoplastic effect. The aims of this study were to investigate whether cordycepin (Cor) could reverse multidrug resistance (MDR) in NSCLC and to explore the underlying mechanisms.Methods: Cell proliferation and apoptosis were analyzed in NSCLC cell lines in vitro and in vivo, parental and DDP-resistant A549 cells, treated with DDP alone or combination with Cor. Proteins of different signaling pathways were investigated between DDP-sensistive and -insensitive A549 cell lines by GO terms and KEGG analysis, and perturbations of the MAPK and PI3K-AKT signaling pathways were evaluated by western blot. Results: Our data showed that Cor enhanced DDP inhibition of cell proliferation and promotion of apoptosis markedly compared to DDP alone group in both A549 and A549DDP. The synergic actions were associated with activation of AMPK and inhibition of AKT, mTOR and downstream P709S6K, S6 phosphorylation in the AKT pathway.Conclusion: Cor/DDP combination has synergistic effect on inhibiting proliferation and promoting apoptosis of NSCLC cells in the presence or absence of DDP resistance.


2020 ◽  
Vol 27 (12) ◽  
pp. 1955-1996 ◽  
Author(s):  
Antonio Speciale ◽  
Antonella Saija ◽  
Romina Bashllari ◽  
Maria Sofia Molonia ◽  
Claudia Muscarà ◽  
...  

: Chronic Noncommunicable Diseases (NCDs), mostly represented by cardiovascular diseases, diabetes, chronic pulmonary diseases, cancers, and several chronic pathologies, are one of the main causes of morbidity and mortality, and are mainly related to the occurrence of metabolic risk factors. Anthocyanins (ACNs) possess a wide spectrum of biological activities, such as anti-inflammatory, antioxidant, cardioprotective and chemopreventive properties, which are able to promote human health. Although ACNs present an apparent low bioavailability, their metabolites may play an important role in the in vivo protective effects observed. : This article directly addresses the scientific evidences supporting that ACNs could be useful to protect human population against several NCDs not only acting as antioxidant but through their capability to modulate cell redox-dependent signaling. In particular, ACNs interact with the NF-κB and AP-1 signal transduction pathways, which respond to oxidative signals and mediate a proinflammatory effect, and the Nrf2/ARE pathway and its regulated cytoprotective proteins (GST, NQO, HO-1, etc.), involved in both cellular antioxidant defenses and elimination/inactivation of toxic compounds, so countering the alterations caused by conditions of chemical/oxidative stress. In addition, supposed crosstalks could contribute to explain the protective effects of ACNs in different pathological conditions characterized by an altered balance among these pathways. Thus, this review underlines the importance of specific nutritional molecules for human health and focuses on the molecular targets and the underlying mechanisms of ACNs against various diseases.


2019 ◽  
Vol 24 (39) ◽  
pp. 4626-4638 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed M. Hassanian ◽  
Farzad Rahmani ◽  
Seyed H. Aghaee-Bakhtiari ◽  
Amir Avan ◽  
...  

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been explored. Methods: The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase (SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue. Results: Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect. Conclusion: Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be used as a complementary treatment in clinical settings.


2018 ◽  
Vol 18 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Xiaowei Ding ◽  
Minmin Zhu ◽  
...  

Background: Propofol, a widely used intravenous anesthetic agent, is traditionally applied for sedation and general anesthesia. Explanation: Recent attention has been drawn to explore the effect and mechanisms of propofol against cancer progression in vitro and in vivo. Specifically, the proliferation-inhibiting and apoptosis-inducing properties of propofol in cancer have been studied. However, the underlying mechanisms remain unclear. Conclusion: This review focused on the findings within the past ten years and aimed to provide a general overview of propofol's malignance-modulating properties and the potential molecular mechanisms.


2019 ◽  
Vol 20 (10) ◽  
pp. 2500 ◽  
Author(s):  
Vrathasha Vrathasha ◽  
Hilary Weidner ◽  
Anja Nohe

Background: Osteoporosis is a degenerative skeletal disease with a limited number of treatment options. CK2.3, a novel peptide, may be a potential therapeutic. It induces osteogenesis and bone formation in vitro and in vivo by acting downstream of BMPRIA through releasing CK2 from the receptor. However, the detailed signaling pathways, the time frame of signaling, and genes activated remain largely unknown. Methods: Using a newly developed fluorescent CK2.3 analog, specific inhibitors for the BMP signaling pathways, Western blot, and RT-qPCR, we determined the mechanism of CK2.3 in C2C12 cells. We then confirmed the results in primary BMSCs. Results: Using these methods, we showed that CK2.3 stimulation activated OSX, ALP, and OCN. CK2.3 stimulation induced time dependent release of CK2β from BMPRIA and concurrently CK2.3 colocalized with CK2α. Furthermore, CK2.3 induced BMP signaling depends on ERK1/2 and Smad1/5/8 signaling pathways. Conclusion: CK2.3 is a novel peptide that drives osteogenesis, and we detailed the molecular sequence of events that are triggered from the stimulation of CK2.3 until the induction of mineralization. This knowledge can be applied in the development of future therapeutics for osteoporosis.


1985 ◽  
Vol 108 (4) ◽  
pp. 511-517 ◽  
Author(s):  
Nandalal Bagchi ◽  
Birdie Shivers ◽  
Thomas R. Brown

Abstract. Iodine in excess is known to acutely inhibit thyroidal secretion. In the present study we have characterized the time course of the iodine effect in vitro and investigated the underlying mechanisms. Labelled thyroid glands were cultured in vitro in medium containing mononitrotyrosine, an inhibitor of iodotyrosine deiodinase. The rate of hydrolysis of labelled thyroglobulin was measured as the proportion of labelled iodotyrosines and iodothyronines recovered at the end of culture and was used as an index of thyroidal secretion. Thyrotrophin (TSH) administered in vivo acutely stimulated the rate of thyroglobulin hydrolysis. Addition of Nal to the culture medium acutely inhibited both basal and TSH-stimulated thyroglobulin hydrolysis. The effect of iodide was demonstrable after 2 h, maximal after 6 h and was not reversible upon removal of iodide. Iodide abolished the dibutyryl cAMP induced stimulation of thyroglobulin hydrolysis. Iodide required organic binding of iodine for its effect but new protein or RNA synthesis was not necessary. The inhibitory effects of iodide and lysosomotrophic agents such as NH4C1 and chloroquin on thyroglobulin hydrolysis were additive suggesting different sites of action. Iodide added in vitro altered the distribution of label in prelabelled thyroglobulin in a way that suggested increased coupling in the thyroglobulin molecule. These data indicate that 1) the iodide effect occurs progressively over a 6 h period, 2) continued presence of iodide is not necessary once the inhibition is established, 3) iodide exerts its action primarily at a post cAMP, prelysosomal site and 4) the effect requires organic binding of iodine, but not new RNA or protein synthesis. Our data are consistent with the hypothesis that excess iodide acutely inhibits thyroglobulin hydrolysis by increasing the resistance of thyroglobulin to proteolytic degradation through increased iodination and coupling.


Author(s):  
Xiaohua Jie ◽  
William Pat Fong ◽  
Rui Zhou ◽  
Ye Zhao ◽  
Yingchao Zhao ◽  
...  

AbstractRadioresistance is regarded as the main barrier to effective radiotherapy in lung cancer. However, the underlying mechanisms of radioresistance remain elusive. Here, we show that lysine-specific demethylase 4C (KDM4C) is overexpressed and correlated with poor prognosis in lung cancer patients. We provide evidence that genetical or pharmacological inhibition of KDM4C impairs tumorigenesis and radioresistance in lung cancer in vitro and in vivo. Moreover, we uncover that KDM4C upregulates TGF-β2 expression by directly reducing H3K9me3 level at the TGF-β2 promoter and then activates Smad/ATM/Chk2 signaling to confer radioresistance in lung cancer. Using tandem affinity purification technology, we further identify deubiquitinase USP9X as a critical binding partner that deubiquitinates and stabilizes KDM4C. More importantly, depletion of USP9X impairs TGF-β2/Smad signaling and radioresistance by destabilizing KDM4C in lung cancer cells. Thus, our findings demonstrate that USP9X-mediated KDM4C deubiquitination activates TGF-β2/Smad signaling to promote radioresistance, suggesting that targeting KDM4C may be a promising radiosensitization strategy in the treatment of lung cancer.


Sign in / Sign up

Export Citation Format

Share Document