scholarly journals NIK-dependent RelB Activation Defines a Unique Signaling Pathway for the Development of Vα14i NKT Cells

2003 ◽  
Vol 197 (12) ◽  
pp. 1623-1633 ◽  
Author(s):  
Dirk Elewaut ◽  
Raziya B. Shaikh ◽  
Kirsten J. L. Hammond ◽  
Hilde De Winter ◽  
Andrew J. Leishman ◽  
...  

A defect in RelB, a member of the Rel/nuclear factor (NF)-κB family of transcription factors, affects antigen presenting cells and the formation of lymphoid organs, but its role in T lymphocyte differentiation is not well characterized. Here, we show that RelB deficiency in mice leads to a selective decrease of NKT cells. RelB must be expressed in an irradiation-resistant host cell that can be CD1d negative, indicating that the RelB expressing cell does not contribute directly to the positive selection of CD1d-dependent NKT cells. Like RelB-deficient mice, aly/aly mice with a mutation for the NF-κB–inducing kinase (NIK), have reduced NKT cell numbers. An analysis of NK1.1 and CD44 expression on NKT cells in the thymus of aly/aly mice reveals a late block in development. In vitro, we show that NIK is necessary for RelB activation upon triggering of surface receptors. This link between NIK and RelB was further demonstrated in vivo by analyzing RelB+/− × aly/+ compound heterozygous mice. After stimulation with α-GalCer, an antigen recognized by NKT cells, these compound heterozygotes had reduced responses compared with either RelB+/− or aly/+ mice. These data illustrate the complex interplay between hemopoietic and nonhemopoietic cell types for the development of NKT cells, and they demonstrate the unique requirement of NKT cells for a signaling pathway mediated by NIK activation of RelB in a thymic stromal cell.

2002 ◽  
Vol 195 (7) ◽  
pp. 835-844 ◽  
Author(s):  
Daniel G. Pellicci ◽  
Kirsten J.L. Hammond ◽  
Adam P. Uldrich ◽  
Alan G. Baxter ◽  
Mark J. Smyth ◽  
...  

The development of CD1d-dependent natural killer T (NKT) cells is poorly understood. We have used both CD1d/α-galactosylceramide (CD1d/αGC) tetramers and anti-NK1.1 to investigate NKT cell development in vitro and in vivo. Confirming the thymus-dependence of these cells, we show that CD1d/αGC tetramer-binding NKT cells, including NK1.1+ and NK1.1− subsets, develop in fetal thymus organ culture (FTOC) and are completely absent in nude mice. Ontogenically, CD1d/αGC tetramer-binding NKT cells first appear in the thymus, at day 5 after birth, as CD4+CD8−NK1.1−cells. NK1.1+ NKT cells, including CD4+ and CD4−CD8− subsets, appeared at days 7–8 but remained a minor subset until at least 3 wk of age. Using intrathymic transfer experiments, CD4+NK1.1− NKT cells gave rise to NK1.1+ NKT cells (including CD4+ and CD4− subsets), but not vice-versa. This maturation step was not required for NKT cells to migrate to other tissues, as NK1.1− NKT cells were detected in liver and spleen as early as day 8 after birth, and the majority of NKT cells among recent thymic emigrants (RTE) were NK1.1−. Further elucidation of this NKT cell developmental pathway should prove to be invaluable for studying the mechanisms that regulate the development of these cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2128-2128
Author(s):  
Alexis Rossignol ◽  
Anne Barra ◽  
Francois Guilhot ◽  
Ali G. Turhan ◽  
Jean-Marc Gombert

Abstract Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by the presence of the pathognomonic Philadelphia chromosome and the chimeric BCR-ABL oncoprotein with deregulated tyrosine kinase activity. It has been shown previously that T cell immunity contributes to the control of CML, and several arguments suggest an implication of NKT cells in this anti-tumoral immunity. We thus compared frequency, phenotype and functions of blood NKT cells (defined by the CD1d tetramer+ Vα24+ staining) in healthy subjects and patients with CML. Three groups of patients were studied, including Patients in chronic phase (CP) (either at diagnosis or unresponsive to treatment) patients in major/complete cytogenetic remission induced by interferon-alpha (IFN-α) or patients in major/complete cytogenetic remission induced by imatinib mesylate (IM, a specific inhibitor of the BCR-ABL tyrosine kinase). Our results showed that blood NKT cells frequency was not significantly different between healthy donors (n = 17), CP patients (n = 14) and IM-treated patients (n = 16) (0.062 % versus 0.079 % versus 0.041 % respectively). On the other hand, this frequency defined as above was found to be dramatically decreased in patients in complete remission after IFN-α therapy ( 0.01 %, n = 15 patients). We have then analyzed from the phenotypic point of view NKT cells from these three groups. This ex vivo phenotypic study showed that NKT phenotype (expression of CCR7 and CD161) was clearly modified in the IFN-treated group as compared to IM-treated or CP patients and healthy donors, with a clear enrichment in CD161-CCR7+ NKT cells (49% versus 26%, 22% and18% respectively). This CD161-CCR7+ phenotype has been described as the central memory T cell phenotype, with increased lymph-node homing and antigen-presenting cell-stimulating capacities. We have then performed functional studies of NKT cells measuring their proliferative response to α-galactosylceramide (αGC) as a specific triggering antigen. NKT proliferative response to α-GC was abolished in CP patients (2-fold expansion versus 83-fold in healthy donors). This functional impairment was found to be restored in patients treated with IM and in patients treated with IFN-α (106-fold and 20-fold expansion respectively), although this latter group had a strongly depleted NKT compartment. More interestingly, the incubation of CP CML cells in the presence of IM (0.5 and 1 micromolar, n = 5) led to the partial restoration of the NKT cell reactivity to α-GC (29-fold expansion versus α-GC alone). Thus, our results suggest that IFN-α therapy leads to the generation of "central memory-like phenotype" NKT cells, which could play an important role in the long-term remissions observed in these patients. Moreover, our results strongly suggest that IM is able to partially restore the antigenic-response of CML NKT cells in vitro and in vivo, suggesting a role of BCR-ABL in the anergic state of these cells as this was observed at diagnosis. The IM-induced restoration of NKT cell proliferation defect in CP patients suggest that the antileukemic effect of IM could also be partially due to this action in vivo. Cellular mechanisms involved in this phenomenon are currently under study.


2015 ◽  
Vol 18 (2) ◽  
pp. 64-73
Author(s):  
Truong Tat Dang ◽  
Thuan Cong Nguyen ◽  
Hieu Van Tran

hGM-CSF (human granulocytemacrophage colony stimulating factor) is a cytokine secreted by many cell types. Its characters are suitable for vaccine adjuvant such as ability to stimulate survival, differentiation and enhancement the functions of antigen-presenting cells. This cytokine is also a chemoattractant for monocytes and neutrophils to the infected sites, stimulates the expression of several cytokines like IL-1, IL-6, TNF, which are essential for B and T lymphocyte differentiation. However, hGM-CSF has some drawbacks for being an adjuvant candidate due to its easy degradation, toxicity at high concentration and low-dose requirement for therapeutic effect. Drugs delivery system using chitosan can overcome these disadvantages of hGM-CSF. In this present study, chitosan particles were prepared and evaluated the absorption and release of human hGM-CSF. Firstly, the activity of hGM CSF was evaluated by proliferation bioassay using TF-1 cell line. Afterward, chitosan particles were prepared by ionic gelation method and were examined for its toxicity on TF‑1 cell line. After protein absorbance onto chitosan particles, the release capacity and in vitro protection of chitosan for hGM-CSF were assessed. The result showed that hGM-CSF had an ED50 value of 106 pg/mL. The synthesized chitosan particles had an average diameter of 24.5 nm and were nontoxic. Based on the results of SDS-PAGE and Bradford, the adsorption efficiency of hGM‑CSF onto chitosan particles reached 99 % and chitosan has the ability to release hGM-CSF and protects it from hydrolysis of trypsin. In conclusion, the synthesized chitosan beads absorbed and released hGMCSF with its activity remained. This result provides the evidence for further in vivo researches.


Blood ◽  
2010 ◽  
Vol 115 (2) ◽  
pp. 230-237 ◽  
Author(s):  
Hiroshi Watarai ◽  
Andrei Rybouchkin ◽  
Naomi Hongo ◽  
Yuko Nagata ◽  
Sakura Sakata ◽  
...  

Abstract Establishment of a system with efficient generation of natural killer T (NKT) cells from embryonic stem (ES) cells would enable us to identify the cells with NKT-cell potential and obtain NKT cells with desired function. Here, using cloned ES (NKT-ES) cells generated by the transfer of nuclei from mature NKT cells, we have established a culture system that preferentially developed functional NKT cells and also identified early NKT progenitors, which first appeared on day 11 as a c-kit+ population in the cocultures on OP9 cells with expression of Notch ligand, delta-like1 (OP9/Dll-1) and became c-kitlo/− on day 14. Interestingly, in the presence of Notch signals, NKT-ES cells differentiated only to thymic CD44lo CD24hi NKT cells producing mainly interleukin-4 (IL-4), whereas NKT cells resembling CD44hi CD24lo liver NKT cells producing mainly interferon γ (IFN-γ) and exhibiting strong adjuvant activity in vivo were developed in the switch culture starting at day 14 in the absence of Notch. The cloned ES culture system offers a new opportunity for the elucidation of the molecular events on NKT-cell development and for the establishment of NKT-cell therapy.


Blood ◽  
2011 ◽  
Vol 117 (9) ◽  
pp. 2625-2639 ◽  
Author(s):  
Maria Carla Bosco ◽  
Daniele Pierobon ◽  
Fabiola Blengio ◽  
Federica Raggi ◽  
Cristina Vanni ◽  
...  

Abstract Dendritic cells (DCs) are a heterogeneous group of professional antigen-presenting cells functioning as sentinels of the immune system and playing a key role in the initiation and amplification of innate and adaptive immune responses. DC development and functions are acquired during a complex differentiation and maturation process influenced by several factors present in the local milieu. A common feature at pathologic sites is represented by hypoxia, a condition of low pO2, which creates a unique microenvironment affecting cell phenotype and behavior. Little is known about the impact of hypoxia on the generation of mature DCs (mDCs). In this study, we identified by gene expression profiling a significant cluster of genes coding for immune-related cell surface receptors strongly up-regulated by hypoxia in monocyte-derived mDCs and characterized one of such receptors, TREM-1, as a new hypoxia-inducible gene in mDCs. TREM-1 associated with DAP12 in hypoxic mDCs, and its engagement elicited DAP12-linked signaling, resulting in ERK-1, Akt, and IκBα phosphorylation and proinflammatory cytokine and chemokine secretion. Finally, we provided the first evidence that TREM-1 is expressed on mDCs infiltrating the inflamed hypoxic joints of children affected by juvenile idiopathic arthritis, representing a new in vivo marker of hypoxic mDCs endowed with proinflammatory properties.


Blood ◽  
2004 ◽  
Vol 103 (2) ◽  
pp. 383-389 ◽  
Author(s):  
Mie Nieda ◽  
Miki Okai ◽  
Andrea Tazbirkova ◽  
Henry Lin ◽  
Ayako Yamaura ◽  
...  

Abstract Human Vα24+Vβ11+ natural killer T (NKT) cells are a distinct CD1d-restricted lymphoid subset specifically and potently activated by α-galactosylceramide (α-GalCer) (KRN7000) presented by CD1d on antigen-presenting cells. Preclinical models show that activation of Vα24+Vβ11+ NKT cells induces effective antitumor immune responses and potentially important secondary immune effects, including activation of conventional T cells and NK cells. We describe the first clinical trial of cancer immune therapy with α-GalCer–pulsed CD1d-expressing dendritic cells. The results show that this therapy has substantial, rapid, and highly reproducible specific effects on Vα24+Vβ11+ NKT cells and provide the first human in vivo evidence that Vα24+Vβ11+ NKT cell stimulation leads to activation of both innate and acquired immunity, resulting in modulation of NK, T-, and B-cell numbers and increased serum interferon-γ. We present the first clinical evidence that Vα24+Vβ11+ NKT cell memory produces faster, more vigorous secondary immune responses by innate and acquired immunity upon restimulation.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Ben Liu ◽  
Meng Zhou ◽  
Xiangchun Li ◽  
Xining Zhang ◽  
Qinghua Wang ◽  
...  

AbstractThere is a male preponderance in gastric cancer (GC), which suggests a role of androgen and androgen receptor (AR). However, the mechanism of AR signaling in GC especially in female patients remains obscure. We sought to identify the AR signaling pathway that might be related to prognosis and examine the potential clinical utility of the AR antagonist for treatment. Deep learning and gene set enrichment analysis was used to identify potential critical factors associated with gender bias in GC (n = 1390). Gene expression profile analysis was performed to screen differentially expressed genes associated with AR expression in the Tianjin discovery set (n = 90) and TCGA validation set (n = 341). Predictors of survival were identified via lasso regression analyses and validated in the expanded Tianjin cohort (n = 373). In vitro and in vivo experiments were established to determine the drug effect. The GC gender bias was attributable to sex chromosome abnormalities and AR signaling dysregulation. The candidates for AR-related gene sets were screened, and AR combined with miR-125b was associated with poor prognosis, particularly among female patients. AR was confirmed to directly regulate miR-125b expression. AR-miR-125b signaling pathway inhibited apoptosis and promoted proliferation. AR antagonist, bicalutamide, exerted anti-tumor activities and induced apoptosis both in vitro and in vivo, using GC cell lines and female patient-derived xenograft (PDX) model. We have shed light on gender differences by revealing a hormone-regulated oncogenic signaling pathway in GC. Our preclinical studies suggest that AR is a potential therapeutic target for this deadly cancer type, especially in female patients.


2021 ◽  
Vol 22 (4) ◽  
pp. 1514 ◽  
Author(s):  
Akihiro Yachie

Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document