scholarly journals Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell–derived IFN-γ

2014 ◽  
Vol 211 (7) ◽  
pp. 1393-1405 ◽  
Author(s):  
Henner F. Farin ◽  
Wouter R. Karthaus ◽  
Pekka Kujala ◽  
Maryam Rakhshandehroo ◽  
Gerald Schwank ◽  
...  

Paneth cells (PCs) are terminally differentiated, highly specialized secretory cells located at the base of the crypts of Lieberkühn in the small intestine. Besides their antimicrobial function, PCs serve as a component of the intestinal stem cell niche. By secreting granules containing bactericidal proteins like defensins/cryptdins and lysozyme, PCs regulate the microbiome of the gut. Here we study the control of PC degranulation in primary epithelial organoids in culture. We show that PC degranulation does not directly occur upon stimulation with microbial antigens or bacteria. In contrast, the pro-inflammatory cytokine Interferon gamma (IFN-γ) induces rapid and complete loss of granules. Using live cell imaging, we show that degranulation is coupled to luminal extrusion and death of PCs. Transfer of supernatants from in vitro stimulated iNKT cells recapitulates degranulation in an IFN-γ-dependent manner. Furthermore, endogenous IFN-γ secretion induced by anti-CD3 antibody injection causes Paneth loss and release of goblet cell mucus. The identification of IFN-γ as a trigger for degranulation and extrusion of PCs establishes a novel effector mechanism by which immune responses may regulate epithelial status and the gut microbiome.

Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 255
Author(s):  
Wilmer Cuervo ◽  
Lorraine M. Sordillo ◽  
Angel Abuelo

Dairy calves are unable to mount an effective immune response during their first weeks of life, which contributes to increased disease susceptibility during this period. Oxidative stress (OS) diminishes the immune cell capabilities of humans and adult cows, and dairy calves also experience OS during their first month of life. However, the impact that OS may have on neonatal calf immunity remains unexplored. Thus, we aimed to evaluate the impact of OS on newborn calf lymphocyte functions. For this, we conducted two experiments. First, we assessed the association of OS status throughout the first month of age and the circulating concentrations of the cytokines interferon-gamma (IFN-γ) and interleukin (IL) 4, as well as the expression of cytokine-encoding genes IFNG, IL2, IL4, and IL10 in peripheral mononuclear blood cells (PBMCs) of 12 calves. Subsequently, we isolated PBMCs from another 6 neonatal calves to investigate in vitro the effect of OS on immune responses in terms of activation of lymphocytes, cytokine expression, and antibody production following stimulation with phorbol 12-myristate 13-acetate or bovine herpesvirus-1. The results were compared statistically through mixed models. Calves exposed to high OS status in their first month of age showed higher concentrations of IL-4 and expression of IL4 and IL10 and lower concentrations of IFN-γ and expression of IFNG and IL2 than calves exposed to lower OS. In vitro, OS reduced lymphocyte activation, production of antibodies, and protein and gene expression of key cytokines. Collectively, our results demonstrate that OS can compromise some immune responses of newborn calves. Hence, further studies are needed to explore the mechanisms of how OS affects the different lymphocyte subsets and the potential of ameliorating OS in newborn calves as a strategy to augment the functional capacity of calf immune cells, as well as enhance calves’ resistance to infections.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1128.1-1129
Author(s):  
A. Mavropoulos ◽  
S. Tsiogkas ◽  
D. Skyvalidas ◽  
C. Liaskos ◽  
A. Roussaki-Schulze ◽  
...  

Background:Delphinidin, a dietary anthocyanidin and powerful anti-oxidant from pigmented fruits and vegetables, has broad anti-inflammatory properties. In a human skin model of psoriasis, delphinidin reduced expression of proliferative and inflammatory markers (1).Objectives:The rationale of our study was to assess whether delphinidin can in vitro suppress IL-17 and IFN-γ production in peripheral blood mononuclear cell (PBMC) subsets from patients with psoriatic arthritis (PsA).Methods:PBMCs were obtained from 24 patients with PsA attending the outpatient clinic of the Department of Rheumatology/clinical Immunology at the University General Hospital of Larissa, Greece. 16 age- and sex-matched healthy volunteers were also included in the study. Delphinidin was supplemented at a concentration ranging from 1 to 50μg/ml, one hour prior to cell stimulation. Cell viability (Annexin V staining) and innate/adaptive lymphocyte subpopulations were assessed by flow cytometry with a panel of fluorochrome-conjugated antibodies against CD56, CD3, CD4 and CD8. Intracellular expression of IL-17 and IFN-γ was measured following PMA/ionomycin stimulation for 5 hours using standard cell permeabilization protocols and monoclonal antibodies against IL-17 and IFN-γResults:Delphinidin at concentration ≥10 μg/ml sharply diminished IL-17-production by CD4(+) T cells (Th17) and CD56(+)CD3(+) (NKT) cells from patients with psoriatic arthritis and normal controls (p≤0.05). IFN-γ producing T (CD4 and CD8) cells, as well as NK and NKT cells were also dose-dependently suppressed following delphinidin pre-incubation in both patients and healthy controls. Inhibition of IFN-γ(+) cells ranged from 27 to 69% and peaked at delphinidin concentration 20-50μg/ml. The inhibitory effect of delphinidin on IL-17 and IFN-γ producing lymphocytes was not due to compromised cell viability, as assessed by annexin V binding.Conclusion:Delphinidin exerts, in a dose-dependent manner, a profound in vitro inhibitory effect on T cell and NKT cell IL-17 and IFN-γ production in PsA, and therefore, it may be used as a dietary immunosuppressant, complementary to standard treatment.References:[1]Chamcheu JC Skin Pharmacol Physiol. 2015;28(4):177-88. doi: 10.1159/000368445Disclosure of Interests:ATHANASIOS MAVROPOULOS: None declared, Sotirios Tsiogkas: None declared, Dimitrios Skyvalidas: None declared, Christos Liaskos: None declared, Aggeliki Roussaki-Schulze Grant/research support from: Received a grant to support the educational and research activities of the department from Genesis Pharma (2018), Speakers bureau: Received honoraria from Genesis Pharma and Janssen(2017) and from Roche and Pharmaserve Lilly(2018), Efterpi Zafiriou Speakers bureau: Received honoraria from Genesis Pharma, Abbvie, Novartis, Roche, Jansses(2017) and Novartis, Abbvie(2018), Dimitrios Bogdanos: None declared, Lazaros Sakkas Grant/research support from: Received a grant to support the educational and research activities of the department from Bristol-Meyers Squib, Speakers bureau: Received honoraria from Actellion(2018), Janssen(2017), Novartis(2017), Sanofi-Aventis(2018), Abbvie(2017) and Roche(2017)


2002 ◽  
Vol 11 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Vera L. Petricevich

The purpose of this study was to investigate the effects ofTityus serrulatusvenom (TSV) on murine peritoneal macrophages evaluated in terms of activation. The effects of crude TSV were analysed by detection of cytokines, oxygen intermediate metabolites (H2O2) and nitric oxide (NO) in supernatants of peritoneal macrophages. Several functional bioassays were employed including anin vitromodel for envenomating: cytotoxicity of TSV was assessed using the lyses percentage. Tumor necrosis factor (TNF) activity was assayed by measuring its cytotoxic activity on L-929 cells, and interleukin-6 (IL-6) and interferon-γ (IFN-γ) were assayed by enzyme-linked immunosorbent assay, whereas NO levels were detected by Griess colorimetric reactions in culture supernatant of macrophages incubated with TSV and subsequently exposed to either lipopolysaccharide or IFN-γ. Incubation of macrophages with TSV increased production of IL-6 and IFN-γ in a dose-dependent manner. TNF production was not detected in supernatants treated with TSV at any concentration. The increase in IL-6 secretion was not associated with concentration-dependent cytoxicity of TSV on these cells. These data suggest that the cytotoxicity does not appear to be the main cause of an increased cytokine production by these cells. Although NO is an important effector molecule in macrophage microbicidal activity, the inducing potential of the test compounds for its release was found to be very moderate, ranging from 125 to 800 mM. Interestingly, NO levels of peritoneal macrophages were increased after IFN-γ. Moreover, NO production had an apparent effect on macrophage activity. The results obtained here also shown that the TSV induces an important elevation in H2O2release. These results combined with NO production suggest that TSV possesses significant immunomodulatory activities capable of stimulating immune functionsin vitro.


2021 ◽  
Author(s):  
N Bhaskaran ◽  
E Schneider ◽  
F Faddoul ◽  
A Paes da Silva ◽  
R Asaad ◽  
...  

AbstractResidual systemic inflammation and mucosal immune dysfunction persist in people living with HIV (PLWH) despite treatment with combined anti-retroviral therapy (cART), but the underlying immune mechanisms are poorly understood. Here we report an altered immune landscape involving upregulation of TLR- and inflammasome signaling, localized CD4+ T cell hyperactivation, and counterintuitively, an enrichment of CD4+CD25+FOXP3+ regulatory T cells (Tregs) in the oral mucosa of HIV+ patients on therapy. Using human oral tonsil cultures, we found that HIV infection causes an increase in a unique population of FOXP3+ cells expressing PD-1, IFN-γ, Amphiregulin (AREG), and IL-10. These cells persisted even in the presence of the anti-retroviral drug and underwent further expansion driven by TLR-2 ligands and IL-1β. IL-1β also promoted PD-1 upregulation in AKT1 dependent manner. PD-1 stabilized FOXP3 and AREG expression in these cells through a mechanism requiring the activation of Asparaginyl Endopeptidase (AEP). Importantly, these FOXP3+ cells were incapable of suppressing CD4+ T cells in vitro. Concurrently, HIV+ patients harbored higher levels of PD-1, IFN-γ, Amphiregulin (AREG), and IL-10 expressing FOXP3+ cells, which strongly correlated with CD4+ T cell hyperactivation, suggesting an absence of CD4+ T cell regulation in the oral mucosa. Taken together, this study provides insights into a novel mechanism of FOXP3+ cell dysregulation and reveals a critical link in the positive feedback loop of oral mucosal immune activation events in HIV+ patients on therapy.One Sentence SummaryHIV-induced immune dysfunction in lymphoid and mucosal tissues


2009 ◽  
Vol 77 (9) ◽  
pp. 3826-3837 ◽  
Author(s):  
Anna Martner ◽  
Susann Skovbjerg ◽  
James C. Paton ◽  
Agnes E. Wold

ABSTRACT Streptococcus pneumoniae is a major pathogen in humans. The pathogenicity of this organism is related to its many virulence factors, the most important of which is the thick pneumococcal capsule that minimizes phagocytosis. Another virulence-associated trait is the tendency of this bacterium to undergo autolysis in stationary phase through activation of the cell wall-bound amidase LytA, which breaks down peptidoglycan. The exact function of autolysis in pneumococcal pathogenesis is, however, unclear. Here, we show the selective and specific inefficiency of wild-type S. pneumoniae for inducing production of phagocyte-activating cytokines in human peripheral blood mononuclear cells (PBMC). Indeed, clinical pneumococcal strains induced production of 30-fold less tumor necrosis factor (TNF), 15-fold less gamma interferon (IFN-γ), and only negligible amounts of interleukin-12 (IL-12) compared with other closely related Streptococcus species, whereas the levels of induction of IL-6, IL-8, and IL-10 production were similar. If pneumococcal LytA was inactivated by mutation or by culture in a medium containing excess choline, the pneumococci induced production of significantly more TNF, IFN-γ, and IL-12 in PBMC, whereas the production of IL-6, IL-8, and IL-10 was unaffected. Further, adding autolyzed pneumococci to intact bacteria inhibited production of TNF, IFN-γ, and IL-12 in a dose-dependent manner but did not inhibit production of IL-6, IL-8, and IL-10 in response to the intact bacteria. Fragments from autolyzed bacteria inhibited phagocytosis of intact bacteria and reduced the in vitro elimination of pneumococci from human blood. Our results suggest that fragments generated by autolysis of bacteria with reduced viability interfere with phagocyte-mediated elimination of live pneumococci.


Thorax ◽  
2019 ◽  
Vol 74 (7) ◽  
pp. 675-683 ◽  
Author(s):  
Martha Torres ◽  
Claudia Carranza ◽  
Srijata Sarkar ◽  
Yolanda Gonzalez ◽  
Alvaro Osornio Vargas ◽  
...  

RationaleAssociations between urban (outdoor) airborne particulate matter (PM) exposure and TB and potential biological mechanisms are poorly explored.ObjectivesTo examine whether in vivo exposure to urban outdoor PM in Mexico City and in vitro exposure to urban outdoor PM2.5 (< 2.5 µm median aerodynamic diameter) alters human host immune cell responses to Mycobacterium tuberculosis.MethodsCellular toxicity (flow cytometry, proliferation assay (MTS assay)), M. tuberculosis and PM2.5 phagocytosis (microscopy), cytokine-producing cells (Enzyme-linked immune absorbent spot (ELISPOT)), and signalling pathway markers (western blot) were examined in bronchoalveolar cells (BAC) and peripheral blood mononuclear cells (PBMC) from healthy, non-smoking, residents of Mexico City (n=35; 13 female, 22 male). In vivo-acquired PM burden in alveolar macrophages (AM) was measured by digital image analysis.Measurements and main resultsIn vitro exposure of AM to PM2.5 did not affect M. tuberculosis phagocytosis. High in vivo-acquired AM PM burden reduced constitutive, M. tuberculosis and PM-induced interleukin-1β production in freshly isolated BAC but not in autologous PBMC while it reduced constitutive production of tumour necrosis factor-alpha in both BAC and PBMC. Further, PM burden was positively correlated with constitutive, PM, M. tuberculosis and purified protein derivative (PPD)-induced interferon gamma (IFN-γ) in BAC, and negatively correlated with PPD-induced IFN-γ in PBMC.ConclusionsInhalation exposure to urban air pollution PM impairs important components of the protective human lung and systemic immune response against M. tuberculosis. PM load in AM is correlated with altered M. tuberculosis-induced cytokine production in the lung and systemic compartments. Chronic PM exposure with high constitutive expression of proinflammatory cytokines results in relative cellular unresponsiveness.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Guoping Ding ◽  
Tao Shen ◽  
Chen Yan ◽  
Mingjie Zhang ◽  
Zhengrong Wu ◽  
...  

Abstract Background Pancreatic cancer is characterized by a highly immunosuppressive tumor microenvironment and evasion of immune surveillance. Although programmed cell death 1 receptor (PD-1) blockade has achieved certain success in immunogenic cancers, the responses to the PD-1 antibody are not effective or sustained in patients with pancreatic cancer. Methods Firstly, PD-1 expressions on peripheral CD8+ T-lymphocytes of patients with pancreatic cancer and healthy donors were measured. In in vitro study, peripheral T-lymphocytes were isolated and treated with nivolumab and/or interferon-γ, and next, PD-1-blockade effects, proliferations, cytokine secretions and cytotoxic activities were tested after different treatments. In in vivo study, mice bearing subcutaneous pancreatic cancer cell lines were treated with induced T-lymphocytes and tumor sizes were measured. Results PD-1 protein expression is increased on peripheral CD8+ T cells in patients with pancreatic ductal adenocarcinoma compared with that in health donor. PD-1 expression on CD8+ T-lymphocytes was decreased by nivolumab in a concentration-dependent manner in vitro. IFN-γ could directly down-regulate expression of PD-1 in vitro. Furthermore, the combination therapy of nivolumab and IFN-γ resulted in greatest effect of PD-1-blockde (1.73 ± 0.78), compared with IFN-γ along (18.63 ± 0.82) and nivolumab along (13.65 ± 1.22). Moreover, the effects of nivolumab plus IFN-γ largest promoted the T-lymphocytes function of proliferations, cytokine secretions and cytotoxic activities. Most importantly, T-lymphocytes induced by nivolumab plus IFN-γ presented the best repression of tumor growth. Conclusions IFN-γ plus a PD-1-blockading agent could enhance the immunologic function and might play a crucial role in effective adoptive transfer treatments of pancreatic cancer.


2019 ◽  
Vol 3 (3) ◽  
pp. 476-488 ◽  
Author(s):  
Asumi Yokota ◽  
Hideyo Hirai ◽  
Ryuichi Sato ◽  
Hiroko Adachi ◽  
Fumiko Sato ◽  
...  

Abstract Even in the era of ABL tyrosine kinase inhibitors, eradication of chronic myeloid leukemia (CML) stem cells is necessary for complete cure of the disease. Interferon-α (IFN-α) has long been used for the treatment of chronic-phase CML, but its mechanisms of action against CML stem cells remain unclear. We found that IFN-α upregulated CCAAT/enhancer binding protein β (C/EBPβ) in BCR-ABL–expressing mouse cells by activating STAT1 and STAT5, which were recruited to a newly identified 3′ distal enhancer of Cebpb that contains tandemly aligned IFN-γ–activated site elements. Suppression or deletion of the IFN-γ–activated site elements abrogated IFN-α–dependent upregulation of C/EBPβ. IFN-α induced differentiation and exhaustion of CML stem cells, both in vitro and in vivo, in a C/EBPβ-dependent manner. In addition, IFN-α upregulated C/EBPβ and induced exhaustion of lineage− CD34+ cells from CML patients. Collectively, these results clearly indicate that C/EBPβ is a critical mediator of IFN-α–induced differentiation and exhaustion of CML stem cells.


Parasitology ◽  
2000 ◽  
Vol 121 (5) ◽  
pp. 545-554 ◽  
Author(s):  
A. LOUKAS ◽  
A. DOEDENS ◽  
M. HINTZ ◽  
R. M. MAIZELS

Infective larvae of the dog roundworm Toxocara canis survive in the tissues of their hosts for extended periods in a state of developmental arrest, successfully evading immune destruction. This survival strategy is thought to be mediated by T. canis excretory/secretory (TES) products which downregulate or divert the immune response. We purified one of the major TES products, TES-70 and gained amino acid sequence from 4 tryptic peptides. These peptides were matched to a predicted protein from a cDNA that was isolated by expression screening a T. canis cDNA library with mouse anti-TES serum. The predicted protein (Tc-CTL-4) is similar to, but larger than, Tc-CTL-1, a 32-kDa C-type lectin secreted by T. canis larvae. Tc-CTL-4 has a signal peptide, 2 Cys-rich domains and a C-terminal calcium-dependent C-type lectin domain that shares sequence similarity with host immune cell receptors such as macrophage mannose receptor and CD23. The lectin domain was expressed in bacteria and antiserum to the purified recombinant protein was used to confirm that Tc-ctl-4 did encode the native TES-70 glycoprotein. TES-70 selectively bound to ligands on the surface of Madin–Darby Canine Kidney cells in vitro in a calcium-dependent manner, inhibitable by mammalian serum, indicating that a host glycan is the native ligand for this new parasite lectin.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3714-3714 ◽  
Author(s):  
Lei Wu ◽  
Peter Schafer ◽  
George Muller ◽  
David Stirling ◽  
J. Blake Bartlett

Abstract Lenalidomide (Revlimid® is approved for the treatment of transfusion-dependent patients with anemia due to low- or intermediate-1-risk MDS associated with a del 5q cytogenetic abnormality with or without additional cytogenetic abnormalities, and in combination with dexamethasone is for the treatment of multiple myeloma patients who have received at least one prior therapy. Encouraging early results suggest a potential for clinical efficacy in B cell non-Hodgkin’s lymphoma (NHL). Potential mechanisms of action include anti-angiogenic, anti-proliferative and immunomodulatory activities. Lenalidomide has been shown to enhance Th1-type cytokines and T cell and NK cell activation markers in patients with advanced cancers. Furthermore, lenalidomide has been shown to enhance rituximab-mediated protection in a SCID mouse lymphoma model in vivo. We have utilized an in vitro ADCC system to assess the ability of lenalidomide to directly enhance human NK cell function in response to therapeutic antibodies, such as rituximab (chimeric anti-CD20 mAb). Isolated NK cells produced little or no IFN-γ in response to IgG and/or IL-2 or IL-12. However, pre-treatment of NK cells with lenalidomide greatly enhanced IFN-γ production by NK cells in a dose-dependent manner. In a functional ADCC assay, NHL cell lines (Namalwa, Farage & Raji) were pre-coated with rituximab and exposed to NK cells pre-treated with lenalidomide in the presence of either exogenous IL-2 or IL-12. After 4 hours in culture the viability of the tumor cells was assessed. Lenalidomide consistently and synergistically increased the killing of tumor cells in a dose-dependent manner and up to >4-fold compared to rituximab alone. Rituximab alone had only a small effect in this model and there was no killing of cells in the absence of rituximab. The presence of either exogenous IL-2 or IL-12 was required to see enhanced killing by lenalidomide. In cancer patients lenalidomide has been shown to increase serum IL-12 levels and is also known to induce IL-2 production by T cells in vitro. Potential mechanisms for enhanced ADCC include increased signaling through NK FCγ receptors and/or IL-2 or IL-12 receptors. However, we found that these receptors are unaffected by lenalidomide, although downstream effects on NK signaling pathways are likely and are being actively investigated. In conclusion, we have shown that lenalidomide strongly enhances the ability of rituximab to induce ADCC mediated killing of NHL cells in vitro. This provides a strong rationale for combination of these drugs in patients with NHL and CLL.


Sign in / Sign up

Export Citation Format

Share Document