The influence of picture element size on the quality of clinical radionuclide images

1982 ◽  
Vol 27 (7) ◽  
pp. 913-926 ◽  
Author(s):  
P F Sharp ◽  
R B Cheeser ◽  
J R Mallard
Keyword(s):  
2014 ◽  
Vol 621 ◽  
pp. 400-406
Author(s):  
Ming Ming Wang ◽  
Teng Fei Li ◽  
Xin Li ◽  
Cheng Liu ◽  
Hui Xia Liu

White body in the design process needs to meet the needs of a wide range of performance requirement. Adequate stiffness and modal are the basis to ensure the vehicle’s performance of vibration noise. Simultaneously, in order to reduce energy consumption and cost, the lightweight design of the white body has become the mainstream. In this paper, the optimization design is conducted for stiffness and modal of a commercial vehicle’s white body based on the theory of the finite element size sensitivity optimization design. Firstly, build the finite element model of a vehicle’s white body and analyze its stiffness and modal. Some changes were made to the car-body’s partial structure according to the distributing of strain energy achieved from above analysis, which improved the car-body’s dynamic and static performance initially. Secondly, choose panels needed to be optimized by reference to the density of strain energy and panels’ mass. Then, the car-body’s structure was optimized using panels’ thickness as design variables, stiffness and modal frequencies as constrains and minimizing weight of white car-body as objective. After the analysis of the result, modal separation was put forward to improve the quality of this finite element optimization design model. Finally, the car-body’s stiffness and mode nature entirely satisfied the requirements with car-body’s weight decreased.


1991 ◽  
Vol 58 (2) ◽  
pp. 586-588 ◽  
Author(s):  
G. Becker ◽  
P. Carnevali ◽  
B. Chayapathy ◽  
W. Imaino ◽  
R. B. Morris ◽  
...  

Using a recently developed code for three-dimensional p-type finite element computations in elasticity, we have studied, with a series of numerical experiments, the behavior of the solution in the presence of singularities. Worst-cast theoretical estimates predict a global pollution of the solution, unless optimally graded meshes are used. On the other hand, we observe that except in an immediate neighborhood of a singularity, and even using uniform meshes, the quality of the solution is not degraded to any practically relevant extent. This has important practical consequences because it allows modelers to introduce artifical singularities for the purpose of simplifying models. The size of the area around a singularity where the solution is appreciably degraded can be estimated in terms of the minimum effective wavelength of the basis functions used; the latter, in turn, can be related to the element size and the polynomial order used.


Author(s):  
K. T. Tokuyasu

During the past investigations of immunoferritin localization of intracellular antigens in ultrathin frozen sections, we found that the degree of negative staining required to delineate u1trastructural details was often too dense for the recognition of ferritin particles. The quality of positive staining of ultrathin frozen sections, on the other hand, has generally been far inferior to that attainable in conventional plastic embedded sections, particularly in the definition of membranes. As we discussed before, a main cause of this difficulty seemed to be the vulnerability of frozen sections to the damaging effects of air-water surface tension at the time of drying of the sections.Indeed, we found that the quality of positive staining is greatly improved when positively stained frozen sections are protected against the effects of surface tension by embedding them in thin layers of mechanically stable materials at the time of drying (unpublished).


Author(s):  
Robert M. Glaeser

It is well known that a large flux of electrons must pass through a specimen in order to obtain a high resolution image while a smaller particle flux is satisfactory for a low resolution image. The minimum particle flux that is required depends upon the contrast in the image and the signal-to-noise (S/N) ratio at which the data are considered acceptable. For a given S/N associated with statistical fluxtuations, the relationship between contrast and “counting statistics” is s131_eqn1, where C = contrast; r2 is the area of a picture element corresponding to the resolution, r; N is the number of electrons incident per unit area of the specimen; f is the fraction of electrons that contribute to formation of the image, relative to the total number of electrons incident upon the object.


Author(s):  
L. D. Jackel

Most production electron beam lithography systems can pattern minimum features a few tenths of a micron across. Linewidth in these systems is usually limited by the quality of the exposing beam and by electron scattering in the resist and substrate. By using a smaller spot along with exposure techniques that minimize scattering and its effects, laboratory e-beam lithography systems can now make features hundredths of a micron wide on standard substrate material. This talk will outline sane of these high- resolution e-beam lithography techniques.We first consider parameters of the exposure process that limit resolution in organic resists. For concreteness suppose that we have a “positive” resist in which exposing electrons break bonds in the resist molecules thus increasing the exposed resist's solubility in a developer. Ihe attainable resolution is obviously limited by the overall width of the exposing beam, but the spatial distribution of the beam intensity, the beam “profile” , also contributes to the resolution. Depending on the local electron dose, more or less resist bonds are broken resulting in slower or faster dissolution in the developer.


Author(s):  
G. Lehmpfuhl

Introduction In electron microscopic investigations of crystalline specimens the direct observation of the electron diffraction pattern gives additional information about the specimen. The quality of this information depends on the quality of the crystals or the crystal area contributing to the diffraction pattern. By selected area diffraction in a conventional electron microscope, specimen areas as small as 1 µ in diameter can be investigated. It is well known that crystal areas of that size which must be thin enough (in the order of 1000 Å) for electron microscopic investigations are normally somewhat distorted by bending, or they are not homogeneous. Furthermore, the crystal surface is not well defined over such a large area. These are facts which cause reduction of information in the diffraction pattern. The intensity of a diffraction spot, for example, depends on the crystal thickness. If the thickness is not uniform over the investigated area, one observes an averaged intensity, so that the intensity distribution in the diffraction pattern cannot be used for an analysis unless additional information is available.


Author(s):  
K. Shibatomi ◽  
T. Yamanoto ◽  
H. Koike

In the observation of a thick specimen by means of a transmission electron microscope, the intensity of electrons passing through the objective lens aperture is greatly reduced. So that the image is almost invisible. In addition to this fact, it have been reported that a chromatic aberration causes the deterioration of the image contrast rather than that of the resolution. The scanning electron microscope is, however, capable of electrically amplifying the signal of the decreasing intensity, and also free from a chromatic aberration so that the deterioration of the image contrast due to the aberration can be prevented. The electrical improvement of the image quality can be carried out by using the fascionating features of the SEM, that is, the amplification of a weak in-put signal forming the image and the descriminating action of the heigh level signal of the background. This paper reports some of the experimental results about the thickness dependence of the observability and quality of the image in the case of the transmission SEM.


Sign in / Sign up

Export Citation Format

Share Document