Analytical model of the modulated photoluminescence in semiconductor materials

Author(s):  
Nicolas Moron ◽  
Baptiste Bérenguier ◽  
José Alvarez ◽  
Jean Paul Kleider

Abstract Modulated photoluminescence (MPL) is an optoelectronic characterization technique of semiconductor materials. Going to high frequencies enables one to characterize fast phenomena, and so materials with a short lifetime such as chalcogenides or III-V absorbers. Some typical signatures have already been experimentally observed. However, physical mechanisms and quantitative analyses are not well understood yet. Here, using both an analytical approach and a full numerical modeling, we study how the energy position of a defect level, its electron and hole capture cross sections, its density, influence the frequency dependence of the MPL phase. We show that quantitative information can be extracted. We also study the effect of additional surface recombination, and of non homogeneities created by carrier generation profiles or asymmetric top surface and bottom surface recombination velocities, where diffusion of the carriers plays a role and can be limiting at high frequency. Finally we apply our model to an experimental result to extract defect parameters of the sample. Our analysis highlights the usefulness of MPL and the importance of having a proper modeling of the experiment.

Author(s):  
Jerrold L. Abraham

Inorganic particulate material of diverse types is present in the ambient and occupational environment, and exposure to such materials is a well recognized cause of some lung disease. To investigate the interaction of inhaled inorganic particulates with the lung it is necessary to obtain quantitative information on the particulate burden of lung tissue in a wide variety of situations. The vast majority of diagnostic and experimental tissue samples (biopsies and autopsies) are fixed with formaldehyde solutions, dehydrated with organic solvents and embedded in paraffin wax. Over the past 16 years, I have attempted to obtain maximal analytical use of such tissue with minimal preparative steps. Unique diagnostic and research data result from both qualitative and quantitative analyses of sections. Most of the data has been related to inhaled inorganic particulates in lungs, but the basic methods are applicable to any tissues. The preparations are primarily designed for SEM use, but they are stable for storage and transport to other laboratories and several other instruments (e.g., for SIMS techniques).


1986 ◽  
Vol 251 (6) ◽  
pp. H1324-H1332 ◽  
Author(s):  
A. R. Pries ◽  
K. Ley ◽  
P. Gaehtgens

Microvessel hematocrits and diameters were determined in each vessel segment between bifurcations of three complete microvascular networks in rat mesentery. Classification of the segments as arteriolar, venular, or arteriovenular (av) was based on flow direction at branch points. Photographic and videomicroscopic mapping was used to obtain quantitative information on the architecture and topology of the networks. This topological information allowed the analysis of hematocrit distribution within a series of consecutive-flow cross sections, each of which carried the total flow through the network. The observed reduction of mean hematocrit in the more peripheral cross sections is explained by the presence of a “vessel” and a “network” Fahraeus effect. The vessel Fahraeus effect results from velocity difference between red cells and blood within the individual vessel segments due to the existing velocity and cell concentration profiles. The network Fahraeus effect is based on the velocity difference of red cells and blood caused by velocity and hematocrit heterogeneity between the vessels constituting any of the complete-flow cross sections. The network Fahraeus effect is found to account for approximately 20% of the total hematocrit reduction and increases toward the most distal cross sections.


1969 ◽  
Vol 38 (2) ◽  
pp. 365-374 ◽  
Author(s):  
Joseph B. Keller ◽  
Van C. Mow

An asymptotic solution is obtained to the problem of internal wave propagation in a horizontally stratified inhomogeneous fluid of non-uniform depth. It also applies to fluids which are not stratified, but in which the constant density surfaces have small slopes. The solution is valid when the wavelength is small compared to all horizontal scale lengths, such as the radius of curvature of a wavefront, the scale length of the bottom surface variations and the scale length of the horizontal density variations. The theory underlying the solution involves rays, a phase function satisfying the eiconal equation, and amplitude functions satisfying transport equations. All these equations are solved in terms of the rays and of the solution of the internal wave problem for a horizontally stratified fluid of constant depth. The theory is thus very similar to geometrical optics and its extensions. It can be used to treat problems of propagation, reflexion from vertical cliffs or from shorelines, refraction, determination of the frequencies and wave patterns of trapped waves, etc. For fluid of constant density, it reduces to the theory of Keller (1958). The theory is applied to waves in a fluid with an exponential density distribution on a uniformly sloping beach. The predicted wavelength is shown to agree well with the experimental result of Wunsch (1969). It is also applied to determine edge waves near a shoreline and trapped waves in a channel.


1995 ◽  
Vol 198 (9) ◽  
pp. 1817-1827 ◽  
Author(s):  
A Michelsen ◽  
K Rohrseitz

Physical mechanisms involved in directional hearing are investigated in two species of short-horned grasshoppers that differ in body length by a factor of 3­4. The directional cues (the effects of the direction of sound incidence on the amplitude and phase angle of the sounds at the ears) are more pronounced in the larger animal, but the scaling is not simple. At high frequencies (10­20 kHz), the sound pressures at the ears of the larger species (Schistocerca gregaria) differ sufficiently to provide a useful directionality. In contrast, at low frequencies (3­5 kHz), the ears must be acoustically coupled and work as pressure difference receivers. At 3­5 kHz, the interaural sound transmission is approximately 0.5 (that is, when a tympanum is driven by a sound pressure of unit amplitude at its outer surface, the tympanum of the opposite ear receives a sound pressure with an amplitude of 0.5 through the interaural pathway). The interaural transmission decreases with frequency, and above 10 kHz it is only 0.1­0.2. It still has a significant effect on the directionality, however, because the directional cues are large. In the smaller species (Chorthippus biguttulus), the interaural sound transmission is also around 0.5 at 5 kHz, but the directionality is poor. The reason for this is not the modest directional cues, but rather the fact that the transmitted sound is not sufficiently delayed for the ear to exploit the directional cues. Above 7 kHz, the transmission increases to approximately 0.8 and the transmission delay increases; this allows the ear to become more directional, despite the still modest directional cues.


2020 ◽  
Vol 495 (4) ◽  
pp. 3943-3960 ◽  
Author(s):  
E Chiaraluce ◽  
F Panessa ◽  
G Bruni ◽  
R D Baldi ◽  
E Behar ◽  
...  

ABSTRACT A thorough study of radio emission in active galactic nuclei (AGNs) is of fundamental importance to understand the physical mechanisms responsible for the emission and the interplay between accretion and ejection processes. High-frequency radio observations can target the nuclear contribution of smaller emitting regions and are less affected by absorption. We present JVLA 22 and 45 GHz observations of 16 nearby (0.003 ≤ z ≤ 0.3) hard-X-ray-selected AGNs at the (sub)-kpc scale with tens μJy beam−1 sensitivity. We detected 15/16 sources, with flux densities ranging from hundreds μJy to tens Jy (specific luminosities from ∼1020 to ${\sim}10^{25}\, \mathrm{ W}\, \mathrm{ Hz}^{-1}$ at 22 GHz). All detected sources host a compact core, with eight being core-dominated at either frequencies, the others exhibiting also extended structures. Spectral indices range from steep to flat/inverted. We interpret this evidence as either due to a core+jet system (6/15), a core accompanied by surrounding star formation (1/15), to a jet oriented close to the line of sight (3/15), to emission from a corona or the base of a jet (1/15), although there might be degeneracies between different processes. Four sources require more data to shed light on their nature. We conclude that, at these frequencies, extended, optically thin components are present together with the flat-spectrum core. The LR/LX ∼ 10−5 relation is roughly followed, indicating a possible contribution to radio emission from a hot corona. A weakly significant correlation between radio core (22 and 45 GHz) and X-ray luminosities is discussed in the light of an accretion–ejection framework.


Author(s):  
Atsushi Maeda ◽  
Takayuki Yamagata ◽  
Nobuyuki Fujisawa

In the present paper, the inflow phenomenon in the near-field of a buoyant jet issuing from a square duct is studied by using scanning LIF and scanning PIV measurements. The scanning LIF visualization allows an insight into the critical condition of the inflow phenomenon in a wide range of Froude number and Reynolds number. While, the scanning PIV allows the quantitative information on the inflow rate through the duct exit. The experimental result shows that the critical Froude number increases with an increase in Reynolds number in the duct exit up to Reynolds number 2,000, though it is weakened at higher Reynolds number. The examination of the inflow rate indicates that the large magnitude of the inflow rate occurs in the lower Froude number and Reynolds number.


Geosphere ◽  
2020 ◽  
Vol 16 (6) ◽  
pp. 1495-1507
Author(s):  
Richard W. Allmendinger

Abstract GMDE is a program, available on the desktop for Apple Macintosh, Microsoft Windows, and Linux platforms and in a mobile version for iOS, that enables geologists to extract quantitative structural information from geologic maps and satellite images. The program facilitates the digitizing of strikes and dips or calculating them from three-point problems, calculation of stratigraphic map thickness, determination of piercing points on faults, and the construction of down-plunge projections and vertical cross sections with projected apparent dips, contacts, and cylindrical folds. The program also enables the automatic plotting of planar contacts across topography based on orientation calculated from three clicked points, which can be carried out in the field for immediate hypothesis testing. Error propagation is built into many of the calculations. Maps and satellite images require no projection or datum information, just four points with known latitude and longitude information. Alternatively, the user can enter the map or image in MBTiles format. Users can easily extract X-Y-Z data for any clicked or calculated point or polygon, enabling them to make their own calculations.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5578-5583 ◽  
Author(s):  
S. B. KIM ◽  
H. HUH ◽  
G. H. LEE ◽  
J. S. YOO ◽  
M. Y. LEE

This paper deals with the crashworthiness of an aluminum crash box for an auto-body with the various shapes of cross section such as a rectangle, a hexagon and an octagon. First, crash boxes with various cross sections were tested with numerical simulation to obtain the energy absorption capacity and the mean load. In case of the simple axial crush, the octagon shape shows higher mean load and energy absorption than the other two shapes. Secondly, the crash boxes were assembled to a simplified auto-body model for the overall crashworthiness. The model consists of a bumper, crash boxes, front side members and a sub-frame representing the behavior of a full car at the low speed impact. The analysis result shows that the rectangular cross section shows the best performance as a crash box which deforms prior to the front side member. The hexagonal and octagonal cross sections undergo torsion and local buckling as the width of cross section decreases while the rectangular cross section does not. The simulation result of the rectangular crash box was verified with the experimental result. The simulation result shows close tendency in the deformed shape and the load–displacement curve to the experimental result.


2017 ◽  
Vol 20 (3) ◽  
pp. 121-127
Author(s):  
A.N. Komov

The results of application of semi-conductor converters on the basis of silicon carbide as a sensitive super-high frequency signals recorder. It was also noted that this material is prospective in the development of such areas as medicine, aerospace equipment, high-speed communication lines. The necessity of silicon carbide is increasing for its application in nanoelectronics.


Sign in / Sign up

Export Citation Format

Share Document