scholarly journals Long-term in-vivo recording performance of flexible penetrating microelectrode arrays

2021 ◽  
Vol 18 (6) ◽  
pp. 066018
Author(s):  
Jae-Won Jang ◽  
Yoo Na Kang ◽  
Hee Won Seo ◽  
Boil Kim ◽  
Han Kyoung Choe ◽  
...  

Abstract Objective. Neural interfaces are an essential tool to enable the human body to directly communicate with machines such as computers or prosthetic robotic arms. Since invasive electrodes can be located closer to target neurons, they have advantages such as precision in stimulation and high signal-to-noise ratio (SNR) in recording, while they often exhibit unstable performance in long-term in-vivo implantation because of the tissue damage caused by the electrodes insertion. In the present study, we investigated the electrical functionality of flexible penetrating microelectrode arrays (FPMAs) up to 3 months in in-vivo conditions. Approach. The in-vivo experiment was performed by implanting FPMAs in five rats. The in-vivo impedance as well as the action potential (AP) amplitude and SNR were analyzed over weeks. Additionally, APs were tracked over time to investigate the possibility of single neuron recording. Main results. It was observed that the FPMAs exhibited dramatic increases in impedance for the first 4 weeks after implantation, accompanied by decreases in AP amplitude. However, the increase/decrease in AP amplitude was always accompanied by the increase/decrease in background noise, resulting in quite consistently maintained SNRs. After 4 weeks of implantation, we observed two distinctive issues regarding long-term implantation, each caused by chronic tissue responses or by the delamination of insulation layer. The results demonstrate that the FPMAs successfully recorded neuronal signals up to 12 weeks, with very stably maintained SNRs, reduced by only 16.1% on average compared to the first recordings, although biological tissue reactions or physical degradation of the FPMA were present. Significance. The fabricated FPMAs successfully recorded intracortical signals for 3 months. The SNR was maintained up to 3 months and the chronic function of FPMA was comparable with other silicon based implantable electrodes.

2020 ◽  
Vol 64 (1-4) ◽  
pp. 951-958
Author(s):  
Tianhao Liu ◽  
Yu Jin ◽  
Cuixiang Pei ◽  
Jie Han ◽  
Zhenmao Chen

Small-diameter tubes that are widely used in petroleum industries and power plants experience corrosion during long-term services. In this paper, a compact inserted guided-wave EMAT with a pulsed electromagnet is proposed for small-diameter tube inspection. The proposed transducer is noncontact, compact with high signal-to-noise ratio and unattractive to ferromagnetic tubes. The proposed EMAT is designed with coils-only configuration, which consists of a pulsed electromagnet and a meander pulser/receiver coil. Both the numerical simulation and experimental results validate its feasibility on generating and receiving L(0,2) mode guided wave. The parameters for driving the proposed EMAT are optimized by performance testing. Finally, feasibility on quantification evaluation for corrosion defects was verified by experiments.


Author(s):  
Xiufeng Li ◽  
Victor T C Tsang ◽  
Lei Kang ◽  
Yan Zhang ◽  
Terence T W Wong

AbstractLaser diodes (LDs) have been considered as cost-effective and compact excitation sources to overcome the requirement of costly and bulky pulsed laser sources that are commonly used in photoacoustic microscopy (PAM). However, the spatial resolution and/or imaging speed of previously reported LD-based PAM systems have not been optimized simultaneously. In this paper, we developed a high-speed and high-resolution LD-based PAM system using a continuous wave LD, operating at a pulsed mode, with a repetition rate of 30 kHz, as an excitation source. A hybrid scanning mechanism that synchronizes a one-dimensional galvanometer mirror and a two-dimensional motorized stage is applied to achieve a fast imaging capability without signal averaging due to the high signal-to-noise ratio. By optimizing the optical system, a high lateral resolution of 4.8 μm has been achieved. In vivo microvasculature imaging of a mouse ear has been demonstrated to show the high performance of our LD-based PAM system.


2007 ◽  
Vol 98 (1) ◽  
pp. 502-512 ◽  
Author(s):  
Michael T. Lippert ◽  
Kentaroh Takagaki ◽  
Weifeng Xu ◽  
Xiaoying Huang ◽  
Jian-Young Wu

We describe methods to achieve high sensitivity in voltage-sensitive dye (VSD) imaging from rat barrel and visual cortices in vivo with the use of a blue dye RH1691 and a high dynamic range imaging device (photodiode array). With an improved staining protocol and an off-line procedure to remove pulsation artifact, the sensitivity of VSD recording is comparable with that of local field potential recording from the same location. With this sensitivity, one can record from ∼500 individual detectors, each covering an area of cortical tissue 160 μm in diameter (total imaging field ∼4 mm in diameter) and a temporal resolution of 1,600 frames/s, without multiple-trial averaging. We can record 80–100 trials of intermittent 10-s trials from each imaging field before the VSD signal reduces to one half of its initial amplitude because of bleaching and wash-out. Taken together, the methods described in this report provide a useful tool for visualizing evoked and spontaneous waves from rodent cortex.


2021 ◽  
Author(s):  
Yipu Wang ◽  
Dong Mei ◽  
Xinyi Zhang ◽  
Da-Hui Qu ◽  
Ju Mei ◽  
...  

With increase of social aging, Alzheimer's disease (AD) has been one of the serious diseases threatening human health. The occurrence of A<i>β </i>fibrils<i> </i>or plaques is recognized as the hallmark of AD.<i> </i>Currently, optical imaging has stood out to be a promising technique for the imaging of A<i>β</i> fibrils/plaques and the diagnosis of AD. However, restricted by their poor blood-brain barrier (BBB) penetrability, short-wavelength excitation and emission, and aggregation-caused quenching (ACQ) effect, the clinically used gold-standard optical probes such as <a>thioflavin</a> T (ThT) and thioflavin S (ThS), are not effective enough in the early diagnosis of AD <i>in vivo</i>. Herein, we put forward an “all-in-one” design principle and demonstrate its feasibility in developing high-performance fluorescent probes which are specific to A<i>β</i> fibrils/plaques and promising for super-early <i>in</i>-<i>vivo</i> diagnosis of AD. As a proof of concept, a simple rod-like amphiphilic NIR fluorescent AIEgen, i.e., AIE-CNPy-AD, is developed by taking the specificity, BBB penetration ability, deep-tissue penetration capacity, high signal-to-noise ratio (SNR) into consideration. AIE-CNPy-AD is constituted by connecting the electron-donating and accepting moieties through single bonds and tagging with a propanesulfonate tail, giving rise to the NIR fluorescence, aggregation-induced emission (AIE) effect, amphiphilicity, and rod-like structure, which in turn result in high binding-affinity and excellent specificity to A<i>β</i> fibrils/plaques, satisfactory ability to penetrate BBB and deep tissues, ultrahigh SNR and sensitivity, and high-fidelity imaging capability. <i>In-vitro, ex-vivo,</i> and <i>in-vivo</i> <a>identifying of A<i>β</i> fibrils/plaques</a> in different strains of mice indicate that AIE-CNPy-AD holds the universality to the detection of A<i>β</i> fibrils/plaques. It is noteworthy that AIE-CNPy-AD is even able to trace the small and sparsely distributed A<i>β</i> fibrils/plaques in very young AD model mice such as 4-month-old APP/PS1 mice which are reported to be the youngest mice to have A<i>β</i> deposits in brains, suggesting its great potential in diagnosis and intervention of AD at a super-early stage.


2013 ◽  
Vol 4 (10) ◽  
pp. 2095 ◽  
Author(s):  
Claudio Vinegoni ◽  
Sungon Lee ◽  
Paolo Fumene Feruglio ◽  
Pasquina Marzola ◽  
Matthias Nahrendorf ◽  
...  

Author(s):  
P. A. Demina ◽  
N. V. Sholina ◽  
R. A. Akasov ◽  
D. A. Khochenkov ◽  
A. V. Nechaev ◽  
...  

Abstract Upconversion nanoparticles (UCNPs) are a promising nanoplatform for bioreagent formation for in vivo imaging, which emit UV and blue light under the action of near-infrared radiation, providing deep tissue penetration and maintaining a high signal-to-noise ratio. In the case of solid tumor visualization, the UCNP surface functionalization is required to ensure a long circulation time, biocompatibility, and non-toxicity. The effective UCNP accumulation in the solid tumors is determined by the disturbed architecture of the vascular network and lymphatic drainage. This work demonstrates an approach to the UCNP biofunctionalization with endogenous polysialic acid for in vivo bioreagent formation. Bioreagents possess a low level of nonspecific protein adsorption and macrophage uptake, which allow the prolongation of the circulation time in the bloodstream up to 3 h. This leads to an intense photoluminescent signal in the tumor.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sara Pimenta ◽  
José A. Rodrigues ◽  
Francisca Machado ◽  
João F. Ribeiro ◽  
Marino J. Maciel ◽  
...  

Flexible polymer neural probes are an attractive emerging approach for invasive brain recordings, given that they can minimize the risks of brain damage or glial scaring. However, densely packed electrode sites, which can facilitate neuronal data analysis, are not widely available in flexible probes. Here, we present a new flexible polyimide neural probe, based on standard and low-cost lithography processes, which has 32 closely spaced 10 μm diameter gold electrode sites at two different depths from the probe surface arranged in a matrix, with inter-site distances of only 5 μm. The double-layer design and fabrication approach implemented also provides additional stiffening just sufficient to prevent probe buckling during brain insertion. This approach avoids typical laborious augmentation strategies used to increase flexible probes’ mechanical rigidity while allowing a small brain insertion footprint. Chemical composition analysis and metrology of structural, mechanical, and electrical properties demonstrated the viability of this fabrication approach. Finally, in vivo functional assessment tests in the mouse cortex were performed as well as histological assessment of the insertion footprint, validating the biological applicability of this flexible neural probe for acquiring high quality neuronal recordings with high signal to noise ratio (SNR) and reduced acute trauma.


2021 ◽  
Vol 15 ◽  
Author(s):  
Thanet Pakpuwadon ◽  
Kiyotaka Sasagawa ◽  
Mark Christian Guinto ◽  
Yasumi Ohta ◽  
Makito Haruta ◽  
...  

In this study, we propose a complementary-metal-oxide-semiconductor (CMOS) image sensor with a self-resetting system demonstrating a high signal-to-noise ratio (SNR) to detect small intrinsic signals such as a hemodynamic reaction or neural activity in a mouse brain. The photodiode structure was modified from N-well/P-sub to P+/N-well/P-sub to increase the photodiode capacitance to reduce the number of self-resets required to decrease the unstable stage. Moreover, our new relay board was used for the first time. As a result, an effective SNR of over 70 dB was achieved within the same pixel size and fill factor. The unstable state was drastically reduced. Thus, we will be able to detect neural activity. With its compact size, this device has significant potential to become an intrinsic signal detector in freely moving animals. We also demonstrated in vivo imaging with image processing by removing additional noise from the self-reset operation.


Author(s):  
Antje Kilias ◽  
Yu-Tao Lee ◽  
Ulrich P Froriep ◽  
Charlotte Sielaff ◽  
Dominik Moser ◽  
...  

Abstract Objective. Recording and stimulating neuronal activity across different brain regions requires interfacing at multiple sites using dedicated tools while tissue reactions at the recording sites often prevent their successful long-term application. This implies the technological challenge of developing complex probe geometries while keeping the overall footprint minimal, and of selecting materials compatible with neural tissue. While the potential of soft materials in reducing tissue response is uncontested, the implantation of these materials is often limited to reliably target neuronal structures across large brain volumes. Approach. We report on the development of a new multi-electrode array exploiting the advantages of soft and stiff materials by combining 7-µm-thin polyimide wings carrying platinum electrodes with a silicon backbone enabling a safe probe implantation. The probe fabrication applies microsystems technologies in combination with a temporal wafer fixation method for rear side processing, i.e. grinding and deep reactive ion etching, of slender probe shanks and electrode wings. The wing-type neural probes are chronically implanted into the entorhinal-hippocampal formation in the mouse for in vivo recordings of freely behaving animals. Main results. Probes comprising the novel wing-type electrodes have been realized and characterized in view of their electrical performance and insertion capability. Chronic electrophysiological in vivo recordings of the entorhinal-hippocampal network in the mouse of up to 104 days demonstrated a stable yield of channels containing identifiable multi-unit and single-unit activity outperforming probes with electrodes residing on a Si backbone. Significance. The innovative fabrication process using a process compatible, temporary wafer bonding allowed to realize new Michigan style probe arrays. The wing-type probe design enables a µm-precise probe insertion into brain tissue and long-term stable recordings of unit activity due to the application of a stable backbone and 7-µm-thin probe wings provoking locally a minimal tissue response and protruding from the glial scare of the backbone.


Sign in / Sign up

Export Citation Format

Share Document