scholarly journals Indication of a ship location by the Earth’s geomagnetic field

2021 ◽  
Vol 2061 (1) ◽  
pp. 012086
Author(s):  
D V Zalomikhin ◽  
A L Boran-Keshishian

Abstract The present study focuses on the need to increase the number of methods for indicating a ship location in traffic conditions on routes with heavy shipping, as well as during navigation in hard hydrometeorological conditions. The research purpose is to increase the level of safety and accuracy of ship navigation and effectively meet the requirements in the field of navigation safety and environmental protection. The issue of navigating through physical fields has a wide range of unresolved tasks despite the previously conducted studies. These tasks include investigation of geomagnetic sensors and their relationship to geomagnetic maps, as well as magnetic compasses and ways to improve them by using magnetometers and eliminating errors caused by rotation of the magnetic needle.

Author(s):  
Zakhid A. Godzhayev ◽  
Teymur Z. Godzhayev ◽  
Vladimir A. Korolyash ◽  
Ol’ga Yu. Solov’yeva

The article considers conditions for safe operation of low-tonnage road trains with overall trailers, namely universal platforms with a load capacity of up to 3 tons, capable of transporting agricultural machines, mini-factories and other equipment, as well as tourist houses. Transportation of such trailers on wheels is associated with high risks arising at small turning radii and emergency braking. (Research purpose) The research purpose is in improving the safety of operation and maneuverability of agricultural low-tonnage road trains operating in difficult road and terrain conditions of agricultural production. (Materials and methods) Authors have analyzed the results of research and experiments on the safe operation of low-tonnage road trains with trailers weighing up to 1 ton. The authors developed and tested on the basis of VIM and the Volga State Technical University a mechanical coupling device with a flexible connection that increases the handling and maneuverability of the trailer. (Results and discussion) The authors determined that the critical turning radii depending on the speed of a low-tonnage road train in different road conditions and different loading of the trailer when driving in front and rear for a conventional single-axle trailer with a load capacity of 1.5; 2; 2.5; 3 tons. It was found that the maneuverability is largely provided by the additional force in the cable, so authors recommend using a cable with a diameter of at least 9 mm. (Conclusion) Further research will make it possible to determine the critical indicators of safe operation of a low-tonnage road train with a load capacity of up to 3.5 tons: safe speed when passing critical turns, emergency braking and reversing.


2021 ◽  
Vol 3 (44) ◽  
pp. 111-115
Author(s):  
Tat’yana R. Gallyamova ◽  

When developing modern lighting technologies for objects of the agro-industrial complex, the problem arises of assessing the contribution of reflected light to the normalized illumination. The reflective properties of the surfaces of materials are characterized by a reflection coefficient ρ, which reaches a value of 0.7. This allows us to consider the reflective surfaces as an additional light source and the possibility of reducing energy consumption costs. (Research purpose) The research purpose is in developing a mathematical model that allows us to estimate the spectral reflection coefficient ρ(λ) of materials of construction technologies of the agro-industrial complex in the ultraviolet and visible spectral regions. (Materials and methods) That the disadvantage of various models is the lack of an analytical method for calculating the reflection coefficient in a wide range of wavelengths. We used a probabilistic method to overcome this disadvantage. (Results and discussion) The developed mathematical model makes it possible to estimate the reflection coefficient of the rough surface of materials in a wide range of the spectrum. For concrete, the area of agreement between theory and experiment is in the wavelength range from 250 to 1000 nm. The saturation mode predicted by the theory (the independence of the reflection coefficient from the wavelength) at a reflection coefficient of 0.4 is consistent with the experimental values in the visible range of the spectrum for construction materials of the agro-industrial complex, in particular, gray textured concrete, gray facade paint, light wood, gray silicate brick, new plaster without whitewash. (Conclusions) In the case of normal light incidence, the developed mathematical model allows us to theoretically estimate the reflection coefficient of the rough surfaces of construction technologies of the agro-industrial complex. The proposed model can be used in the development and design of a system of technological lighting of large-area premises (for example, when keeping birds on the floor), as well as for developing recommendations for reducing the energy consumption of existing lighting systems.


2008 ◽  
Vol 12 (6) ◽  
pp. 1257-1271 ◽  
Author(s):  
N. Montaldo ◽  
J. D. Albertson ◽  
M. Mancini

Abstract. Mediterranean ecosystems are commonly heterogeneous savanna-like ecosystems, with contrasting plant functional types (PFTs, e.g. grass and woody vegetation) competing for water. Mediterranean ecosystems are also commonly characterized by strong inter-annual rainfall variability, which influences the distributions of PFTs that vary spatially and temporally. An extensive field campaign in a Mediterranean setting was performed with the objective to investigate interactions between vegetation dynamics, soil water budget and land-surface fluxes in a water-limited ecosystem. Also a vegetation dynamic model (VDM) is coupled to a 3-component (bare soil, grass and woody vegetation) Land surface model (LSM). The case study is in Orroli, situated in the mid-west of Sardegna within the Flumendosa river basin. The landscape is a mixture of Mediterranean patchy vegetation types: trees, including wild olives and cork oaks, different shrubs and herbaceous species. Land surface fluxes, soil moisture and vegetation growth were monitored during the May 2003–June 2006 period. Interestingly, hydrometeorological conditions of the monitored years strongly differ, with dry and wet years in turn, such that a wide range of hydrometeorological conditions can be analyzed. The coupled VDM-LSM model is successfully tested for the case study, demonstrating high model performance for the wide range of eco-hydrologic conditions. Results demonstrate also that vegetation dynamics are strongly influenced by the inter-annual variability of atmospheric forcing, with grass leaf area index changing significantly each spring season according to seasonal rainfall amount.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Derek Hungness ◽  
Raj Bridgelall

The adoption of connected and autonomous vehicles (CAVs) is in its infancy. Therefore, very little is known about their potential impacts on traffic. Meanwhile, researchers and market analysts predict a wide range of possibilities about their potential benefits and the timing of their deployments. Planners traditionally use various types of travel demand models to forecast future traffic conditions. However, such models do not yet integrate any expected impacts from CAV deployments. Consequently, many long-range transportation plans do not yet account for their eventual deployment. To address some of these uncertainties, this work modified an existing model for Madison, Wisconsin. To compare outcomes, the authors used identical parameter changes and simulation scenarios for a model of Gainesville, Florida. Both models show that with increasing levels of CAV deployment, both the vehicle miles traveled and the average congestion speed will increase. However, there are some important exceptions due to differences in the road network layout, geospatial features, sociodemographic factors, land-use, and access to transit.


2012 ◽  
Vol 22 (2) ◽  
pp. 95-103
Author(s):  
Ante Bukša ◽  
Ivica Šegulja ◽  
Vinko Tomas

By adjusting the maintenance approach towards the significant components of ship’s engines and equipment, through the use of operational data from the ship machinery’s daily reports, higher operability and navigation safety can be achieved. The proposed maintenance adjustment model consists of an operation data analysis and risk analysis. The risk analysis comprises the definition of the upper and the lower risk criterion, as well as the definition of a risk index. If the risk index is higher than the lower risk criterion, the component is significant, while it is not significant and has an acceptable risk index if the risk index is lower than the lower risk criterion. For each significant component with a risk index found to be “unacceptable” or “undesirable”, an efficient maintenance policy needs to be adopted. The assessment of the proposed model is based on data regarding the power engine original operation throughout a 13-year period. The results of engine failure examinations reveal that the exhaust valve is the most vulnerable component with the highest rate of failure. For this reason the proposed model of adjusting the maintenance approach has been tested on the exhaust valve sample. It is suggested that the efforts to achieve higher ship operability and navigation safety should go in the direction of periodical adjustments of the maintenance approach i.e. choosing an efficient maintenance policy by reducing the risk indices of the significant engine components. KEY WORDS: maintenance adjustment approach, risk analysis, risk index, lower risk criterion, upper risk criterion, significant components, ship navigation


Author(s):  
M.M. Slivka ◽  
N.V. Lesko

The article is devoted to the study of legislative regulation of the powers of local governments in the field of environmental protection and the development of proposals for their improvement. It is noted that local governments occupy an separate and independent place in the mechanism of public administration, which indicates their special administrative and legal status. It is emphasized that local self-government bodies should be endowed with a sufficient amount of powers that would allow them to protect the interests of the administrative-territorial community in the field of environmental protection as effectively as possible. It is stated that the Constitution as the Basic Law of the state, taking into account the global importance of the issue of environmental protection should clearly and without any ambiguity in interpretation contain an article according to which local governments will be empowered to exercise primary control over environmental protection. natural environment at the local level and bringing perpetrators to justice. It is proposed to supplement Article 15 of the Law of Ukraine «On Environmental Protection», which defines the powers of local councils in the field of environmental protection, paragraph «й» of the following content: "decide to bring to administrative responsibility those guilty of violating legislation in the field of environmental protection environment of individuals and / or legal entities ". It is highlighted that based on the analysis of Part 4 of Art. 42 of the Law of Ukraine «On Local Self-Government in Ukraine», village, town, city mayor have a wide range of powers, but among these powers there are no ones that would give them the right to monitor compliance with environmental legislation in the region and bring perpetrators to justice. It is emphasized that local governments are given broad powers in terms of controling the activities of economic entities and they should be included as a subject of a lawsuit in accordance with Art. 16 of the Law of Ukraine "On Environmental Impact Assessment" in case of violations in the field of environmental impact assessment.


2021 ◽  
Author(s):  
Ashley Smith ◽  
Martin Pačes

<p>ESA's Swarm mission continues to deliver excellent data providing insight into a wide range of geophysical phenomena. The mission is an important asset whose data are used within a number of critical resources, from geomagnetic field models to space weather services. As the product portfolio grows to better deliver on the mission's scientific goals, we face increasing complexity in accessing, processing, and visualising the data and models. ESA provides “VirES for Swarm” [1] (developed by EOX IT Services) to help solve this problem. VirES is a web-based data retrieval and visualisation tool where the majority of Swarm products are available. VirES has a graphical interface but also a machine-to-machine interface (API) for programmable use (a Python client is provided). The VirES API also provides access to geomagnetic ground observatory data, as well as forwards evaluation of geomagnetic field models to give data-model residuals. The "Virtual Research Environment" (VRE) adds utility to VirES with a free cloud-based JupyterLab interface allowing scientists to immediately program their own analysis of Swarm products using the Python ecosystem. We are augmenting this with a suite of Jupyter notebooks and dashboards, each targeting a specific use case, and seek community involvement to grow this resource.</p><p>[1] https://vires.services</p>


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Bo Liu ◽  
Kerui Song ◽  
Jiangnan Xiao

Metasurfaces, kinds of planar ultrathin metamaterials, are able to modify the polarization, phase, and amplitude of physical fields of optical light by designed periodic subwavelength structures, attracting great interest in recent years. Based on the different type of the material, optical metasurfaces can be separated in two categories by the materials: one is metal and the other is dielectric. Metal metasurfaces rely on the surface plasma oscillations of subwavelength metal particles. Nevertheless, the loss caused by the metal structures has been a trouble, especially for devices working in transmit modes. The dielectric metasurfaces are based on the Faraday-Tyndall scattering of high-index dielectric light scattering particles. By reasonably designing the relevant parameters of the unit structure such as the size, direction, and shape, different functions of metasurfaces can realize and bring a wide range of applications. This article focuses on the metasurface concepts such as anomalous reflections and refractions and the working principle of different types of metasurfaces. Here, we briefly review the progress in developing optical over past few years and look into the near future.


2006 ◽  
Vol 57 (3) ◽  
pp. 251 ◽  
Author(s):  
Frank Dunin ◽  
John Passioura

The long-standing debate about the problem of dryland salinity in Australia has been increasingly well informed. We chart here the deepening understanding of the processes involved in how plants use water and what this means for flows in the regolith, from the introduction of the idea of the soil–plant–atmosphere continuum 50 years ago, through the comparative patterns of water use by annual and perennial vegetation and the variety of their hydrological effects in different landscapes, to the realisation, as demonstrated by many of the papers in this special issue of AJAR, that the era of unviable simplistic solutions to dryland salinity is behind us. The mood now is one of cautious optimism that we will be able to develop a wide range of options for maintaining economically viable farming systems that protect the environment by controlling outflow well enough to arrest the spread of dryland salinity.


Author(s):  
Raunak Mishra ◽  
Pallav Kumar ◽  
Shriniwas S. Arkatkar ◽  
Ashoke Kumar Sarkar ◽  
Gaurang J. Joshi

This research was aimed at developing an area occupancy–based method for estimating passenger car unit (PCU) values for vehicle categories under heterogeneous traffic conditions on multilane urban roads for a wide range of traffic flow levels. First, PCU values of vehicle categories were determined according to the Transport and Road Research Laboratory definition and replaced the commonly considered measure of performance speed with area occupancy using simulation. The PCU values obtained were found to be significantly different for different volume-to-capacity ratios; this result shows that the PCU value is dynamic in nature. While the dynamic nature of PCU values is well appreciated, practitioners may prefer a single set of optimized PCU values (unique for each vehicle category). Hence, a new method with a matrix solution was proposed to estimate the optimized or unique set of PCU values with area occupancy as the performance measure. To check the credibility of the proposed method, the estimated PCU values were compared from existing guidelines regulated by the Indian Roads Congress (IRC) and values estimated with the widely accepted dynamic PCU concept of speed–area ratio. Results show that the PCU values suggested by IRC and the dynamic PCU concept using the speed–area ratio underestimate and overestimate the flows, respectively, at different traffic volumes. However, the values obtained with the area-occupancy concept were found to be consistent with the traffic flow in a cars-only traffic situation at different flow conditions. The derived set of optimized PCU values proposed can be useful for traffic engineers, researchers, and practitioners for capacity and level-of-service analysis under heterogeneous traffic conditions.


Sign in / Sign up

Export Citation Format

Share Document