scholarly journals Wear resistance discrete management of formative tool

2021 ◽  
Vol 2131 (5) ◽  
pp. 052040
Author(s):  
A N Kochetov ◽  
E I Fisunova ◽  
T V Lavrenova ◽  
L A Filonenko

Abstract The article is devoted to the organization of management of the application of wear-resistant materials on the formative tool at set intervals by the method of electro-acoustic spraying. A complex highly concentrated effect of the ultrasonic method in a permanent process, based on the pulse energy, which leads to an increase in the plasticity of the material and is not associated with its heating. The law of electro-plastic deformation for a conducting material, taking into account the high density of the acting amperage in the process of active deformation at a constant rate, considered in this article, establishes a clear dependence of the strengthening of the substrate material. The process of concentration of electromagnetic and thermal fields in a conductive material with defects such as a crack makes it possible to use this technology to slow down the propagation of cracks while reducing the concentration of mechanical stresses.

2020 ◽  
pp. 252-255
Author(s):  
V.I. Bolobov ◽  
V.S. Bochkov ◽  
E.V. Akhmerov ◽  
V.A. Plashchinsky ◽  
E.A. Krivokrisenko E.A.

On the example of Hadfield steel, as the most common material of fast-wearing parts of mining equipment, the effect of surface hardening by plastic deformation on their impact and abrasive wear resistance is considered. Wear test is conducted on magnetic ironstone as typical representative of abrasive and hard rock. As result of wear of initial samples with hardness of ∼200 HB and samples pre-hardened with different intensities to the hardness of 300, 337 and 368 HB, it is found that during the initial testing period, the initial samples pass the “self-cold-work hardening” stage with increase in hardness to ∼250 HB, which remains virtually unchanged during further tests; the hardness of the pre-hardened samples does not change significantly throughout the tests. It is established that the rate of impact-abrasive wear of pre-hardened samples is significantly (up to 1.4 times) lower than the original ones that are not subjected to plastic deformation, and decreases with increasing degree of cold-work hardening. Preliminary surface hardening by plastic deformation can serve as effective way to increase the service life of fast-wearing working parts of mining equipment.


2015 ◽  
Vol 819 ◽  
pp. 76-80 ◽  
Author(s):  
Md Abdul Maleque ◽  
Belal Ahmed Ghazal ◽  
Mohammad Yeakub Ali ◽  
Maan Hayyan ◽  
Abu Saleh Ahmed

Coating possesses superior wear resistance which makes the material suitable for components subjected to dynamic applications under sever wearing condition and high temperature applications. In this study, TiC coating layer was synthesized by preplacing a 1 mg/mm2of fine size (~40 μm) TiC powder on the surface of AISI 4340 steel. The composite layer was produced by rapidly melting TiC powder together with the substrate steel using tungsten inert gas (TIG) torch welding at a fixed heat input of 1344 J/mm. The wear behaviour of the coated steel was investigated using a universal pin-on-disc tribometer. The microhardness profile of the coating showed increment of the hardness value (almost 5 times higher) than the substrate material. The wear test results showed that the TiC coated steel has lower wear volume loss hence, higher wear resistance compared to the substrate AISI 4340 steel. Incorporation of TiC into the steel surface has improved the wear behaviour of the steel by reduction of plastic deformation and ploughing of the steel surface. The SEM micrograph of the wear worn surface showed mild type of abrasive wear for coated steel whereas, the AISI 4340 steel showed severe type wear with excessive plastic deformation and ploughing.


Author(s):  
Dongbo Wei ◽  
Fengkun Li ◽  
Xiangfei Wei ◽  
Tomasz Liskiewicz ◽  
Krzysztof J Kubiak ◽  
...  

In this study, surface Cr-Nb alloying was realized on γ-TiAl using double glow plasma hollow cathode discharge technique. An inter-diffusion layer was generated under the surface, composed of Cr2Nb intermetallic compounds. After Cr-Nb alloying, the surface nanohardness of γ-TiAl increased from 5.65 to 11.61 GPa. The surface H/E and H3/E2 increased from 3.37 to 5.98 and from 0.64 to 4.15, respectively. Cr-Nb alloying and its effect on fretting wear were investigated. The surface treatment resulted in improved plastic deformation and fretting wear resistance of γ-TiAl. The fretting wear test showed that an average friction coefficient of γ-TiAl against Si3N4 ball was significantly decreased after Cr-Nb alloying. The fluctuation of friction coefficient during running-in stage was significantly improved. The friction behavior of both γ-TiAl before and after Cr-Nb alloying could be divided into distinctive stages including formation of debris, flaking, formation of crack, and delamination. It was observed that the high hardness, resistance to plastic deformation, and fatigue resistance of γ-TiAl after Cr-Nb alloying could inhibit the formation of debris and delamination during friction test. The fretting wear scar area and the maximum wear scar depth were decreased, indicating that the wear resistance of γ-TiAl has been greatly improved after Cr-Nb alloying. The results indicated that plasma surface Cr-Nb alloying is an effective way for improving the fretting wear resistance of γ-TiAl in aviation area.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5529
Author(s):  
Mykhaylo Pashechko ◽  
Krzysztof Dziedzic ◽  
Jerzy Jozwik

The wear resistance of diffusion coatings in conditions of specific pressures of 3, 7 and 10 MPa was studied. The boride coatings were prepared by means of diffusion methods using C45 steel as the substrate material. Research on the microstructure and redistribution of chemical elements on wear surface of a borided layer was carried out. It was found that the boride coatings should be used under a specific pressure of 7 MPa. It was found that the wear of friction couple coating of steel C45 under specific pressure of 3 MPa proceeds according to the oxidation wear mechanism, while under specific pressures of 7 and 10 MPa the abrasive wear prevails. The wear-induced segregation of atoms in coatings was studied using secondary mass-spectroscopy method (SIMS). Increased C, O, and B concentrations were noticed at the wear surface on depth from 50 to 2000 Å. The secondary wear-induced structure formation on the wear surface resulted in high wear resistance of diffusion borided coatings.


1983 ◽  
Vol 27 ◽  
Author(s):  
P.B. Madakson

ABSTRACTCommercially pure Al was implanted with 300 keV Si+ and 200 keV Pb+ to doses of between l011 and 1017 ions/cm2. Changes in friction, wear, oxidation and hardness were investigated. Silicon increased the hardness and wear resistance of Al and significantly decreased friction and the oxidation of the implanted surface. These changes were observed to be almost proportional to the implanted dose. The implantation of Pb+ resulted in a linear increase in hardness and a decrease in surface oxidation with dose. Friction decreased and wear resistance increased but the changes were not dose dependent. The implantation of Si+ did not significantly alter the distribution of impurities, such as Fe and Cu within the Al matrix, but Pb+ resulted in a diffusion of Fe to the implanted surface. Formation of precipitates was observed and the improvements in the surface properties studied are considered to result from precipitation hardening, which involves the impediment of dislocation movement by the precipitates during plastic deformation of the implanted Al.


2010 ◽  
Vol 163 ◽  
pp. 59-63 ◽  
Author(s):  
Zdenek Pala ◽  
N. Ganev ◽  
Jan Drahokoupil ◽  
Alexej Sveshnikov

Inhomogeneous thermal fields and plastic deformation are two basic phenomena present during surface creation and substantially determine future real structure of the surface layers. In the following, a closer look will be taken at some aspects connected with real structure of milled and ground steels. Impact of end-mill speed and thickness of removed layer on grain size, macroscopic and microscopic residual stress is discussed. Possibility of prestrained surface layer in ground steel has been examined on a set of five types of steels.


2019 ◽  
Vol 23 (Suppl. 4) ◽  
pp. 1025-1034
Author(s):  
Lukasz Brodzik ◽  
Andrzej Frackowiak

Paper presents the problem of heating the damaged insulation of an orbiter. Changes of the insulation?s thermal properties, made by adding conductive material of high value of specific heat in a form of a dope to the protective layer, were examined. An iterative algorithm determining a variable of dope concentration in the material was developed. Insulating material LI900 was used for calculations. Determination of distribution of conductive material concentration was made for materials which, after verification, demonstrated the most beneficial effect on protective properties of the modified insulation layer. Change of properties was to enable time extension of the LI900 insulation tile heating up to the maximal temperature and, additionally, to lowering this temperature.


Author(s):  
Валерий Петровский ◽  
Valeriy Petrovskiy ◽  
Анатолий Рубан ◽  
Anatoliy Ruban

The paper is focused on the problem of the service life of the dredger chain, which largely depends on the efficiency and reliability of the hinge joint, when a mineral abrasive gets into the structural gap resulting in rapid wear of the joint under high dynamic loads. There has been developed a science-based technology of repairing parts of the assembly, without reducing the resource, from cheap and accessible (non-deficient) materials, taking into account modern technical and economic requirements, on samples. Wear resistance of samples of friction pairs has been defined in terms of a chain operating model. The research method is based on comparing the wear rate of samples in a pair made of steel 110Mn13 (sleeve - pin), 110Mn13 and 38CrNi3M (sleeve - pin), according to the standard technologies and taken as a reference, with pairs made of steel 110Mn13, C45K, facing with wire SV08A, electrodes E50A – UONI 13/55 and E – 190Cr5Si7 – LEZ – T – 590 – NG after heat treatment, chemical and heat treatment, surface plastic deformation. Samples were tested in the water-abrasive environment with a load of 6615 N (675 kgf). The wear resistance parameters were determined as following: 1) reference pairs of steel 110Mn13 (bushing-pin) and 110Mn13 (bushing), 38CrNi3Mo (pin); 2) pairs of steel 110Mn13 (bushing) and facing with wire SV08A (pin); 3) pairs of steel 110Mn13 (bushing) and cladding with electrodes E–190Cr5Si7–LEZ –T–590– NG (pin); 4) pairs of steel C45K (bushing) and cladding with E –190Cr5Si7 – LEZ – T – 590 – NG electrodes (pin); 5) pairs of steel C45K (bushing) and clad-ding with E50A – UONI 13/55 electrodes (pin). A graph of dependence of the bushing and pin wear on the relations of initial hardness and structures of friction pair has been built. It is recom-mended to restore the pin with wear-resistant electrodes E – 190Cr5Si7 – LEZ – T – 590 – NG paired with 110Mn13 steel bushing with surface plastic deformation. The wear resistance of a pair, with a different combination of structures, does not depend on the ratio of hardness of Hsl / Hfin. The materials of the pair worn within the reference samples can be recommended for the operational tests.


Author(s):  
Hamdan Gowhar Nahvi

Abstract: Surface of a material can be improved by depositing the filler metal for the enhancement of various properties. Surface should be harder than substrate material for surface improvement. This surface improvement is also known as surfacing. In present research Mild steel specimens of size 140×35×40 were used to deposit surfacing layers and study the feasibility of iron/aluminum with varying compositions on low carbon steel deposited by GTAW process. Specimens for hardness and oxidation resistance were prepared. While studying oxidation of surfaced and un-coated area (base material), oxidation test resulted that the oxidation occurred on surface of base metal (un-coated area) after heating at different temperatures and time intervals. Specimens kept at 500˚C, 700˚C temperatures for 3, 6, 9 hours to get oxidized from un-coated surface but no mark of oxidation and pitting was visible at surfaced area but pitting of un-coated area occurred at 700˚C temperature. Oxidation had no effect to surfaced area. Low temperature oxidation test specimens gave only weight loss from un-coated portion but high temperature oxidation gave high amount of weight reduction due to pitting occurred on un-coated portion. The amount of weight loss of specimens increased with increase in furnace holding time at constant temperature. With increase in temperature oxidation of un-coated area of specimens also increased and pitting action occurred on un-coated area of specimens at high temperature. Further, for the various wear tests the cylindrical pins of 8 mm diameter with spherical tip 4 mm radius was made. Wear tests were carried out on pin on disc sliding wear testing machine. The comparison of wear rate loss was studied with constant sliding distance, varying load and sliding velocity of different compositions of iron/aluminum surfacing and substrate material. Hardness and wear resistance of composition were increased with increase in percentage of Fe element in composition. Composition C1 (Fe:Al/70:30) had high hardness and high wear resistance as compared to composition C2 (Fe:Al/30:70) and C3 (Fe:Al/50:50). Composition C3 (Fe:Al/50:50) had better hardness and wear resistance as compared composition C2 (Fe:Al/70:30). Keywords: Surface improvement, Fe-Al intermetallic, GTAW process, Sliding wear.


Sign in / Sign up

Export Citation Format

Share Document