scholarly journals Research on Optimization of Cross-sectional shape for Aircraft Door Rubber Seal

2021 ◽  
Vol 2133 (1) ◽  
pp. 012005
Author(s):  
Xiuqi Yuan

Abstract Rubber seals are widely used in aircraft door structures, which play important roles on sealing, sound insulation and heat preservation. Aircraft door rubber seals are critical to the normal flight of the aircraft and the safety of the passengers. In this paper, a finite element model of rubber seals for aircraft door with different cross-sections is established. The deformation and stress distribution of the seals under the action of concentrated force and compressive displacement are analyzed, and the calculation results of seals with different cross-sections are compared. The optimal structural form of the cross-sectional shape of the seal is obtained. The research results are of great significance to improve the safety and durability of seals and enhance the sealing performance.

2012 ◽  
Vol 27 (2) ◽  
pp. 264-269 ◽  
Author(s):  
Christian Lorbach ◽  
Ulrich Hirn ◽  
Johannes Kritzinger ◽  
Wolfgang Bauer

Abstract We present a method for 3D measurement of fiber cross sectional morphology from handsheets. An automated procedure is used to acquire 3D datasets of fiber cross sectional images using an automated microtome and light microscopy. The fiber cross section geometry is extracted using digital image analysis. Simple sample preparation and highly automated image acquisition and image analysis are providing an efficient tool to analyze large samples. It is demonstrated that if fibers are tilted towards the image plane the images of fiber cross sections are always larger than the true fiber cross section geometry. In our analysis the tilting angles of the fibers to the image plane are measured. The resulting fiber cross sectional images are distorted to compensate the error due to fiber tilt, restoring the true fiber cross sectional shape. We use an approximated correction, the paper provides error estimates of the approximation. Measurement results for fiber wall thickness, fiber coarseness and fiber collapse are presented for one hardwood and one softwood pulp.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1470
Author(s):  
Omid Rouhi ◽  
Sajad Razavi Bazaz ◽  
Hamid Niazmand ◽  
Fateme Mirakhorli ◽  
Sima Mas-hafi ◽  
...  

Mixing at the microscale is of great importance for various applications ranging from biological and chemical synthesis to drug delivery. Among the numerous types of micromixers that have been developed, planar passive spiral micromixers have gained considerable interest due to their ease of fabrication and integration into complex miniaturized systems. However, less attention has been paid to non-planar spiral micromixers with various cross-sections and the effects of these cross-sections on the total performance of the micromixer. Here, mixing performance in a spiral micromixer with different channel cross-sections is evaluated experimentally and numerically in the Re range of 0.001 to 50. The accuracy of the 3D-finite element model was first verified at different flow rates by tracking the mixing index across the loops, which were directly proportional to the spiral radius and were hence also proportional to the Dean flow. It is shown that higher flow rates induce stronger vortices compared to lower flow rates; thus, fewer loops are required for efficient mixing. The numerical study revealed that a large-angle outward trapezoidal cross-section provides the highest mixing performance, reaching efficiencies of up to 95%. Moreover, the velocity/vorticity along the channel length was analyzed and discussed to evaluate channel mixing performance. A relatively low pressure drop (<130 kPa) makes these passive spiral micromixers ideal candidates for various lab-on-chip applications.


2014 ◽  
Vol 62 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Mir-Jafar-Sadegh Safari ◽  
Mirali Mohammadi ◽  
Golezar Gilanizadehdizaj

Abstract The condition of incipient motion and deposition are of the essential issues for the study of sediment transport. This phenomenon is of great importance to hydraulic engineers for designing sewers, drainage, as well as other rigid boundary channels. This is a study carried out with the objectives of describing the effect of cross-sectional shape on incipient motion and deposition of particles in rigid boundary channels. In this research work, the experimental data given by Loveless (1992) and Mohammadi (2005) are used. On the basis of the critical velocity approach, a new incipient motion equation for a V-shaped bottom channel and incipient deposition of sediment particles equations for rigid boundary channels having circular, rectangular, and U-shaped cross sections are obtained. New equations were compared to the other incipient motion equations. The result shows that the cross-sectional shape is an important factor for defining the minimum velocity for no-deposit particles. This study also distinguishes incipient motion of particles from incipient deposition for particles. The results may be useful for designing fixed bed channels with a limited deposition condition.


1987 ◽  
Vol 1 (2) ◽  
pp. 322-329 ◽  
Author(s):  
H. Warshawsky

The purpose of this paper is to review evidence which casts doubt on the interpretation universally applied to hexagonal images seen in sectioned enamel. The evidence is based on two possible models to explain the hexagonal profiles seen in mammalian enamel with transmission electron microscopy. The "hexagonal ribbon" model proposes that hexagonal profiles are true cross-sections of elongated hexagonal ribbons. The "rectangular ribbon" model proposes that hexagonal profiles are caused by three-dimensional segments that are parallelepipeds contained in the Epon section. Since shadow projections of such rectangular segments give angles that are inconsistent with the hexagonal unit cell, a model based on ribbons with rhomboidal cut ends and angles of 60 and 120° is proposed. The "rhomboidal ribbon" model projects shadows with angles that are predicted by the unit cell. It is suggested that segments of such crystallites in section project as opaque hexagons on the imaging plane in routine transmission electron microscopy. Morphological observations on crystallites in sections - together with predictions from the hexagonal, rectangular, and rhomboidal ribbon models - indicate that crystallites in rat incisor enamel are flat ribbons with rhomboidal cross-sectional shape. Hexagonal images in electron micrographs of thin-sectioned enamel can result from rhomboidal-ended, parallelepiped-shaped segments of these crystallites projected and viewed as two-dimensional shadows.


Author(s):  
Damiano Pasini ◽  
S. C. Burgess ◽  
D. J. Smith

This paper presents a new method for modelling the efficiency of large-scale structural forms. Parametric equations, which include all design parameters and also the effect of buckling, are developed. Shape transformers, envelope efficiency parameter and scaling factor are introduced to describe the geometrical properties of cross-sections and to allow interaction between form and cross-sectional shape selection. Design charts provide insight and understanding and assist the selection of different structural concepts at the preliminary stage of design.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401770817 ◽  
Author(s):  
Mohamed Amine Meghnine ◽  
Mohammad Kamal Hamidou ◽  
Mohammed Hamel

The volute is an essential element in the centrifugal machines. Improving its performance is an effective way to improve the total performance of the turbine. The purpose of this study is to replace the accelerating and guiding nozzle vanes by exploring different design possibilities on the cross-sectional area convergence of the volute, since a decreasing area is then associated with expansion in the subsonic regime. The work is extended to a mixed inflow turbine using the new volute cross sections under pulsating regimes for turbocharging. The numerical simulation results show larger accelerations [Formula: see text] and lesser losses in the case of sections with flatter area in the radial direction and without vaneless space between the volute and the rotor; but this combination has an effect on the exit absolute flow angle which is less uniform.


Forms of wind-induced instability of structures are described, and two of these, typical of long bodies with bluff cross-sections, are selected for more detailed consideration. The first is vortex-induced bending oscillation, a type of resonant response to the periodic surface pressure loading caused by the discrete wake vortex street formed from the shear layers separating from the bluff cross-section. Oscillation phenomena are described, including capture of the vortex frequency by the structural response frequency over a discrete wind speed range and amplification and phase shift of the loading over this range. The second form is transverse galloping, arising from aerodynamic instability of the bluff cross-sectional shape, so that small-amplitude oscillations generate forces which increase the amplitudes to large values. Oscillation phenomena are described, including the occurrence at very nearly natural frequencies, and the relatively large amplitudes (compared to vortex-induced oscillations) increasing with wind speed beyond a critical wind speed dependent on the level o fstructural damping. Effects of body and wind parameters on both forms of oscillation are considered, and methods of analysis and suppression for susceptible structures are described. Some probable future requirements and prospects are considered.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Steve Wolff-Vorbeck ◽  
Max Langer ◽  
Olga Speck ◽  
Thomas Speck ◽  
Patrick Dondl

AbstractMechanical optimisation plays a key role in living beings either as an immediate response of individuals or as an evolutionary adaptation of populations to changing environmental conditions. Since biological structures are the result of multifunctional evolutionary constraints, the dimensionless twist-to-bend ratio is particularly meaningful because it provides information about the ratio of flexural rigidity to torsional rigidity determined by both material properties (bending and shear modulus) and morphometric parameters (axial and polar second moment of area). The determination of the mutual contributions of material properties and structural arrangements (geometry) or their ontogenetic alteration to the overall mechanical functionality of biological structures is difficult. Numerical methods in the form of gradient flows of phase field functionals offer a means of addressing this question and of analysing the influence of the cross-sectional shape of the main load-bearing structures on the mechanical functionality. Three phase field simulations were carried out showing good agreement with the cross-sections found in selected plants: (i) U-shaped cross-sections comparable with those of Musa sp. petioles, (ii) star-shaped cross-sections with deep grooves as can be found in the lianoid wood of Condylocarpon guianense stems, and (iii) flat elliptic cross-sections with one deep groove comparable with the cross-sections of the climbing ribbon-shaped stems of Bauhinia guianensis.


2004 ◽  
Vol 126 (3) ◽  
pp. 527-534 ◽  
Author(s):  
Ravinder B. Siripuram ◽  
Lyndon S. Stephens

This paper presents a numerical study of the effects of different shapes of deterministic microasperities in sliding surface lubrication when hydrodynamic films are found. Positive (protruding) and negative (recessed) asperities of constant height (depth) are considered with circular, square, diamond, hexagonal and triangular cross-sections. Of particular interest is the impact of asperity/cavity cross-sectional geometry on friction and leakage, which has importance in sealing applications. The results indicate that the friction coefficient is insensitive to asperity/cavity shape, but quite sensitive to the size of the cross-section. By contrast, leakage rates are found to be quite sensitive to both cross-sectional shape and size, with triangular asperities giving the smallest leakage rate and square asperities giving a largest leakage rate. The minimum coefficient of friction for all shapes is found to occur at an asperity area fraction of 0.2 for positive asperities and 0.7 for negative asperities. Finally, the results indicate the existence of a critical asperity area fraction where the performance curves for positive and negative asperities cross over. These cross-over points are identified for friction coefficient and leakage rate.


1966 ◽  
Vol 33 (4) ◽  
pp. 881-887 ◽  
Author(s):  
Bruno A. Boley

It is shown in this paper that the thermal stress in a beam or plate cannot exceed the value kαEΔT, where ΔT is the maximum instantaneous temperature excursion in a cross section, and k is a coefficient dependent on the shape of the cross section. A simple general formula for k is found, and results for several special cases of practical interest are given. For rectangular beams (suitably oriented) and for plates, for example, k = 4/3. For any section, k = 1 if the thermal moment is zero; simplifications also occur if the thermal force is zero. The corresponding results for beam deflections are also carried out: The maximum deflection cannot exceed the value kδ kδ′αLΔT, where kδ and kδ′ are coefficients depending respectively on the cross-sectional shape and on the end conditions. For example, for rectangular cross sections, kδ = 3/4; and for a simply supported beam, kδ′ = 1/8.


Sign in / Sign up

Export Citation Format

Share Document