scholarly journals Room temperature Phytosynthesis of Ag/Co bimetallic nanoparticles using aqueous leaf extract of Canna indica

Author(s):  
Anuoluwa Abimbola Akinsiku ◽  
Enock Olugbenga Dare ◽  
Olayinka Oyewale Ajani ◽  
Joan Ayo-Ajayi ◽  
Olabisi Theresa Ademosun ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Savy Panamkuttiyiel Minal ◽  
Soam Prakash

AbstractThe current study provides novel results on the synthesis of bimetallic nanoparticles (BNPs) of gold and palladium (Au–Pd) with an eco-friendly and non-toxic aqueous leaf extract of plant Citrus limon. The BNPs were characterized and toxicity bioassay was examined on the larvae of the pathogen vectors such as Anopheles stephensi and Aedes aegypti mosquitoes. The predation efficiency test was evaluated on the invertebrate non-target organisms such as natural predatory nymphs of dragonfly and damselfly. The results of material characterization using UV VIS spectroscopy confirmed the synthesis of Au–Pd BNPs with the appearance of the SPR bands. FT-IR spectroscopy indicates the presence of functional groups containing high amounts of nitro compounds and amines on the surface of BNPs. TEM result shows the presence of spherical polydisperse Au–Pd BNPs in the sample. The XRD pattern displayed the semi-crystalline nature and the changes in the hydrodynamic size and surface potential was determined for the sample at 0 h, 24 h, 48 h, and 72 h of synthesis through DLS and ZP analysis. Au–Pd BNPs Bioassay provided the effective lethal concentrations (LC50) against the I–IV instar larvae of An. stephensi and Ae. aegypti after 24 h, 48 h, and 72 h of exposure. The LC50 obtained from the larvicidal bioassay was used to test its effect on the predation efficiency of the selected nymphs which showed increased predation from 40 to 48 h of exposure as compared to the negative control. Hereby, we conclude that Au–Pd BNPs bioassay shows toxic mosquito larvicidal activity at the selected concentration with no lethal effect on the predation efficiency of the selected stage of the predatory non-target aquatic invertebrate insects.


2020 ◽  
Author(s):  
Shruti Gupta ◽  
Hemlata Hemlata ◽  
Kiran Kumar Tejavath

In this article we bring up facile one-step phytosynthesis of Silver (Ag), Gold (Au) and Ag/Au bimetallic nanoparticles by reduction of Silver nitrate and Tetrachloroauric acid solution, using aqueous leaf extract of Moringa oleifera. Physical characterization was done using different techniques including UV-Visible spectroscopy, FT-IR Spectroscopic Analysis, DLS, Zeta Potential, XRD, TEM and EDAX. These nanoparticles were evaluated for their cytotoxicity against human hepatocellular carcinoma cells (HepG2) and breast cancer cell line (MDA-MB-231 and MCF-7). Our data suggest these phytosynthesized nanoparticles showed a dose-dependent cytotoxic effect on all the cancer cell lines. However, AuNPs is seen to have higher cytotoxic potential with IC50 value in the range of  9.20-21.46µg/ml  compared to that of Bimetallic NPs (Ag-Au NPs) with IC50 value of 37.22-49.94µg/ml. Whereas, Silver NPs (AgNPs) didn’t show cytotoxic activity upto 60µg/ml in all the three cell lines for 24hrs. Hence, this study supports the effectiveness of phytosynthesized AuNPs for the development of anticancer agents.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381 ◽  
Author(s):  
S Sarshar ◽  
MR Asadi Karam ◽  
M Habibi ◽  
S Bouzari ◽  
X Qin ◽  
...  

2017 ◽  
Vol 13 (2) ◽  
pp. 4671-4677 ◽  
Author(s):  
A. M. Abdelghany ◽  
A.H. Oraby ◽  
Awatif A Hindi ◽  
Doaa M El-Nagar ◽  
Fathia S Alhakami

Bimetallic nanoparticles of silver (Ag) and gold (Au) were synthesized at room temperature using Curcumin. Reduction process of silver and gold ions with different molar ratios leads to production of different nanostructures including alloys and core-shells. Produced nanoparticles were characterized simultaneously with FTIR, UV/vis. spectroscopy, transmission electron microscopy (TEM), and Energy-dispersive X-ray (EDAX). UV/vis. optical absorption spectra of as synthesized nanoparticles reveals presence of surface palsmon resonance (SPR) of both silver at (425 nm) and gold at (540 nm) with small shift and broadness of gold band after mixing with resucing and capping agent in natural extract which suggest presence of bimetallic nano structure (Au/Ag). FTIR and EDAX data approve the presence of bimetallic nano structure combined with curcumin extract. TEM micrographs shows that silver and gold can be synthesized separately in the form of nano particles using curcumin extract. Synthesis of gold nano particles in presence of silver effectively enhance and control formation of bi-metallic structure.


2019 ◽  
Vol 35 (1) ◽  
pp. 145-153
Author(s):  
O. Uyi, ◽  
I.G. Amolo ◽  
A.D. Adetimehin

Several studies have demonstrated the biological efficacy of leaf, stem and root powders or extracts of Chromolaena odorata (L.) King and Robinson against insect pests but those that are focused on the biological efficacy of aqueous leaf extracts against Macrotermes species are scanty. Current management of termites with synthetic insecticides is being discouraged due to human and environmental hazards. Therefore, the insecticidal effectiveness of aqueous leaf extract C. odorata against Macrotermes species was investigated. Five concentrations (0, 2.5, 5.0, 7.5 and 10.0% (w/v)) of the aqueous extract of C. odorata plant were evaluated for repellency and toxicity on the worker caste of Macrotermes species following standard procedures. The filter paper impregnation technique was used for the bioassay. Percentage repellency was monitored for 30 minutes and mortality recorded at 12, 24 and 36 hours post exposure. The leaf extract of C. odorata significantly repelled 95% of Macrotermes species at the highest concentration of 10% (w/v) after 30 minutes post treatment exposure. Mortality of Macrotermes species was independent of treatment concentration, but dependent on duration of exposure. All treatment concentrations of aqueous leaf extract of C. odorata caused significant mortality against Macrotermes species ranging between 94% and 98% compared to the control; indicating very great potential for adoption and use in the management of Macrotermes species.


Author(s):  
M. Linga Rao ◽  
Bhumi G ◽  
Savithramma N

Silver nanoparticles (SNPs) exhibit tremendous applications in medicine as antimicrobial agent.  The use of different parts of plants for the synthesis of nanoparticles is considered as a green technology as it does not involve any harmful chemicals.  In the present study, we report a rapid biosynthesis of silver nanoparticles from aqueous leaf extract of medicinal plant Allamanda cathartica.  The active phytochemicals present in the plant were responsible for the quick reduction of silver ion to metallic silver nanoparticles. The reduced silver nanoparticles were characterized by using UV-Vis spectrophotometry, Scanning Electron Microscope (SEM), Energy Dispersive Analysis of X-ray (EDAX) and Atomic Force Microscopy (AFM).  The spherical shaped silver nanoparticles were observed and it was found to 19-40 nm range of size.  These phytosynthesized SNPs were tested for their antimicrobial activity and it analyzed by measuring the inhibitory zone. A. cathartica aqueous leaf extract of SNPs showed highest toxicity to Pseudomonas followed by Klebsiella, Bacillus and E. coli and lowest toxicity towards Proteus. In fungal species, highest inhibition zone was noted against Rhizopus followed by Curvularia, Aspergillus flavus and Aspergillus niger and minimum inhibition zone was observed against Fusarium species.  These results suggest a promising potential of Indian plant-based green chemistry for production of SNPs for biomedical and nanotechnology applications.


2021 ◽  
pp. 111335
Author(s):  
Mathiyazhagan Narayanan ◽  
Paramasivam Vigneshwari ◽  
Devarajan Natarajan ◽  
Sabariswaran Kandasamy ◽  
Mishal Alsehli ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 299
Author(s):  
Reetika Singh ◽  
Christophe Hano ◽  
Gopal Nath ◽  
Bechan Sharma

Carissa carandas L. is traditionally used as antibacterial medicine and accumulates many antioxidant phytochemicals. Here, we expand this traditional usage with the green biosynthesis of silver nanoparticles (AgNPs) achieved using a Carissa carandas L. leaf extract as a reducing and capping agent. The green synthesis of AgNPs reaction was carried out using 1mM silver nitrate and leaf extract. The effect of temperature on the synthesis of AgNPs was examined using room temperature (25 °C) and 60 °C. The silver nanoparticles were formed in one hour by stirring at room temperature. In this case, a yellowish brown colour was developed. The successful formation of silver nanoparticles was confirmed by UV–Vis, Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) analysis. The characteristic peaks of the UV-vis spectrum and XRD confirmed the synthesis of AgNPs. The biosynthesised AgNPs showed potential antioxidant activity through DPPH assay. These AgNPs also exhibited potential antibacterial activity against human pathogenic bacteria. The results were compared with the antioxidant and antibacterial activities of the plant extract, and clearly suggest that the green biosynthesized AgNPs can constitute an effective antioxidant and antibacterial agent.


Sign in / Sign up

Export Citation Format

Share Document