scholarly journals Assessment of the adaptive potential of strawberry genotypes based on the development of endophytic microbiota and identified R-genes

2021 ◽  
Vol 845 (1) ◽  
pp. 012023
Author(s):  
IV Luk’yanchuk ◽  
K V Zaitseva ◽  
A S Lyzhin

Abstract The paper presents the results of a study of the strawberry genotypes (Fragaria L.) by characteristics of endophytic microbiota and genetic determinants of resistance to fungal pathogens. Highly adaptive genotypes were identified: F. virginiana Duch. ssp. platypetala, F. orientalis Los., F. ovalis Rydb., F. moschata Duch., 298-19-9-43, Urozhaynaya CGL, Flora, Privlekatelnaya and Troitskaya. These strawberry forms are characterized by a high frequency of testing of bacterial microbiota, which suppresses endophytic fungal pathogens. The wild strawberry F. virginiana Duch. ssp. platypetala is characterized by red stele root rot resistance (Rpf1 gene). Strawberry varieties Borovitskaya and Elianny are characterized by anthracnose resistance (Rca2gene).

2018 ◽  
Vol 22 (7) ◽  
pp. 795-799 ◽  
Author(s):  
I. V. Luk’yanchuk ◽  
A. S. Lyzhin ◽  
I. I. Kozlova

Strawberry (Fragaria x ananassa Duch.) varieties are susceptible to many fungal diseases. Identification of forms, carrying resistance genes, is an important stage in breeding programs leading to resistant varieties. The use of molecular markers allows to determine with high reliability the presence of the necessary genes in the genome and to identify promising forms. Some of the common strawberry's diseases, causing significant damage to strawberry plantations, are anthracnose (Colletotrichum acutatum Simmonds) and red stele root rot (Phytophthora fragariae var. fragariae Hickman). Dominant Rca2 gene is involved in monogenic resistance to C. acutatum pathogenicity group 2. Rpf1, Rpf2, Rpf3 genes are determined in monogenic resistance to red stele root rot. The purpose of this study was molecular genetic testing genotypes of genus Fragaria L. to identify carriers of Rca2 allele anthracnose resistance and Rpf1 allele red stele root rot resistance. The objects of study were the wild species of the genus Fragaria L. and strawberry varieties (Fragaria x ananassa Duch.) of different ecological and geographic origin. To assess allelic state Rca2 anthracnose resistance gene the dominant SCAR marker STS-Rca2_240 was used, was linked to the resistance gene Rca2 with a genetic distance of 2.8 cM. Rpf1 gene red stele root rot resistance was identified with the dominant SCAR marker R1A, was linked to the resistance gene Rpf1 with a genetic distance of 3.0 cM. The resistant allele of the marker STS-Rca2_240 was identified in the Laetitia variety (Rca2Rca2 or Rca2rca2 genotype), which allows us to recommend it as a promising source in breeding for anthracnose resistance. The other studied forms have homozygous recessive state of the marker STS-Rca2_240 (putative genotype rca2rca2). The resistant allele of the marker SCAR-R1A in the varieties and wild species of strawberry under study is absent, which presumably indicates their homozygous recessive genotype of Rpf1 gene (rpf1rpf1).


2019 ◽  
Vol 6 (60) ◽  
pp. 31-40
Author(s):  
Alexandr Sergeyevich Lyzhin ◽  
◽  
Irina Vasilievna Luk’yanchuk ◽  
Yekaterina Viktorovna Zhbanova ◽  
◽  
...  

2018 ◽  
Vol 51 (2) ◽  
Author(s):  
Tanveer Hussain ◽  
Tony Adesemoye ◽  
Muhammad Ishtiaq ◽  
Mewash Maqbool ◽  
Azhar Azam ◽  
...  

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Hammad Abdelwanees Ketta ◽  
Omar Abd El-Raouf Hewedy

Abstract Background Root rot pathogens reported to cause considerable losses in both the quality and productivity of common bean (Phaseolus vulgaris L.) and pea (Pisum sativum L.). It is an aggressive crop disease with detriment economic influence caused by Fusarium solani and Rhizoctonia solani among other soil-borne fungal pathogens. Destructive plant diseases such as root rot have been managed in the last decades using synthetic pesticides. Main body Seeking of economical and eco-friendly alternatives to combat aggressive soil-borne fungal pathogens that cause significant yield losses is urgently needed. Trichoderma emerged as promising antagonist that inhibits pathogens including those inducing root rot disease. Detailed studies for managing common bean and pea root rot disease using different Trichoderma species (T. harzianum, T. hamatum, T. viride, T. koningii, T. asperellum, T. atroviridae, T. lignorum, T. virens, T. longibrachiatum, T. cerinum, and T. album) were reported both in vitro and in vivo with promotion of plant growth and induction of systemic defense. The wide scale application of selected metabolites produced by Trichoderma spp. to induce host resistance and/or to promote crop yield, may represent a powerful tool for the implementation of integrated pest management strategies. Conclusions Biological management of common bean and pea root rot-inducing pathogens using various species of the Trichoderma fungus might have taken place during the recent years. Trichoderma species and their secondary metabolites are useful in the development of protection against root rot to bestow high-yielding common bean and pea crops.


BioControl ◽  
2021 ◽  
Author(s):  
Mudassir Iqbal ◽  
Maha Jamshaid ◽  
Muhammad Awais Zahid ◽  
Erik Andreasson ◽  
Ramesh R. Vetukuri ◽  
...  

AbstractUtilization of biocontrol agents is a sustainable approach to reduce plant diseases caused by fungal pathogens. In the present study, we tested the effect of the candidate biocontrol fungus Aureobasidium pullulans (De Bary) G. Armaud on strawberry under in vitro and in vivo conditions to control crown rot, root rot and grey mould caused by Phytophthora cactorum (Lebert and Cohn) and Botrytis cinerea Pers, respectively. A dual plate confrontation assay showed that mycelial growth of P. cactorum and B. cinerea was reduced by 33–48% when challenged by A. pullulans as compared with control treatments. Likewise, detached leaf and fruit assays showed that A. pullulans significantly reduced necrotic lesion size on leaves and disease severity on fruits caused by P. cactorum and B. cinerea. In addition, greenhouse experiments with whole plants revealed enhanced biocontrol efficacy against root rot and grey mould when treated with A. pullulans either in combination with the pathogen or pre-treated with A. pullulans followed by inoculation of the pathogens. Our results demonstrate that A. pullulans is an effective biocontrol agent to control strawberry diseases caused by fungal pathogens and can be an effective alternative to chemical-based fungicides.


Plant Disease ◽  
2020 ◽  
Author(s):  
Prabhat Kumar Shukla ◽  
Tahseen Fatima ◽  
Nidhi Kumari

Mango wilt has been a serious constraint in mango (Mangifera indica L.) production in several countries including India (Shukla et al. 2018). Although, several fungal pathogens have been reported associated with the disease, species of Ceratocystis, Verticillium and Lasiodiplodia have been found predominantly responsible for the wilt (Shukla et al. 2018). A twenty-seven-year old mango tree cv. Dashehari at Rehmankhera, Lucknow, Uttar Pradesh, India suffered sudden wilt (Fig. 1A) during February 2020. Though, symptoms were similar to Ceratocystis wilt, no gummosis was observed on trunk or branches which occurred in the majority of Ceratocystis fimbriata infected trees. The infected roots of the wilted tree exhibited dark brown to black discoloration in woody portions (Fig. 1B). Severely affected roots were completely rotten. Similar symptoms of root infection were observed in an additional 16 declining trees within an orchard of 120 trees total (Fig. 2). The infected hard wood samples from live roots of 16 declining and one wilted trees were utilized for isolation by placing stem tissue of discolored and normal colored tissue on surface sterilized fresh carrot discs placed in a moisture chamber (Fig. 1C) for 10 days. Out of 17 tree samples, isolates of Berkeleyomyces basicola (Berk. & Broome) W.J. Nel, Z.W. de Beer, T.A. Duong, M.J. Wingf. (Nel et al. 2018) obtained from 1 wilted and 9 declining trees were transferred to and maintained in pure culture on potato dextrose agar. Isolates were grown for 7 to 10 days at 23±1 °C temperature in the dark. The isolates were characterized by a greyish black compact mycelial colony (Fig. 1D). Two types of spores, endoconidia (phialospores) and chlamydospores (aleuriospores or amylospores) were observed under microscope. The endoconidia were hyaline, cylindrical in shape with 10 to 42 × 3 to 6 μm (n=50) in size (Fig. 1E). Chains of dark colored chlamydospores (3 to 7 spores in chain) of 24 to 52 × 10 to 12 μm (n=50) size were apparent (Fig. 1E&F). Molecular identification of the fungus isolated from the wilted tree was established by amplifying the ITS1-5.8 rDNA-ITS2 region of fungal genomic DNA and the set of ITS primers (ITS 1 and ITS4) (White et al. 1990) followed by sequencing. The sequence has been submitted to the NCBI database vide accession number MT786402. The present isolate (MT786402) shared >99 percent nucleotide similarity with other B. basicola isolates. The phylogenetic tree was constructed using the ITS1-5.8 rDNA-ITS2 sequences of other B. basicola isolates and other Thielaviopsis spp., C. fimbriata, Chalaropsis thielavioides through neighbor joining method using MEGAX software (Fig. 3) (Kumar et al. 2018). The present isolate formed a distinct cluster along with other B. basicola isolates in a separate clade. Koch's postulate was performed under a transparent polycarbonate sheet roof net house at 14.4 and 42.2 °C minimum and maximum temperatures, respectively. A 100 ml macerated culture suspension consisting of 1000 chlamydospores and endoconidia per ml suspension was inoculated in the rhizosphere of mango seedlings planted in sterilized soil filled in earthen pots, using ten replicates for inoculated and uninoculated plants. Symptoms of necrotic root tissue were observed 90 days after inoculation and were consistent with those observed in the field. The same fungus was re-isolated from infected roots and identity was confirmed. All control plants remained symptom-free and B. basicola was not isolated from the roots. Thus, we conclude that B. basicola is capable of causing root rot disease of mango. To the best of our knowledge this is the first report of B. basicola causing mango root rot and decline across the globe, hitherto unreported. The extent of the root necrosis symptoms associated with mature mango trees demonstrates the potential virulence of B. basicola, although its pathogenicity risk on healthy mature trees is still unknown. However, the possibility of severe losses to the mango industry in world number one mango producer country, India cannot be ruled out, if found widespread.


2020 ◽  
Author(s):  
Jun Su ◽  
Jiaojie Zhao ◽  
Shuqing Zhao ◽  
Mengyu Li ◽  
Xiaofeng Shang ◽  
...  

Due to the field soil changes, high density planting, and straw-returning methods, wheat common root rot (spot blotch), Fusarium crown rot (FCR), and sharp eyespot have become severe threatens to global wheat productions. Only a few wheat genotypes show moderate resistance to these root and crown rot fungal diseases, and the genetic determinants of wheat resistance to these devastating diseases have been poorly understood. This review summarizes the recent progress of genetic studies on wheat resistance to common root rot, Fusarium crown rot, and sharp eyespot. Wheat germplasms with relative higher resistance are highlighted and genetic loci controlling the resistance to each of the disease are summarized.


1963 ◽  
Vol 16 (1) ◽  
pp. 55 ◽  
Author(s):  
A Kerr

At least four fungal pathogens are involved in the root rot-Fusarium wilt complex of peas which is a serious problem following intensive cropping of peas in South Australia. The pathogens are Fusarium oxysporum f. pisi race 2 Snyder & Hansen, F. solani f. pisi Snyder & Hansen, Pythium ultimum Trow, and Ascochyta pinodella L. K. Jones. In susceptible pea cultivars there is a marked interaction between F. oxysporum and P. ultimum. P. ultimum alone causes initial stunting from which plants gradually recover; F. OX1Jsporum alone probably CRuses little damage; both fungi together CRuse initial stunting followed by severe wilt symptom about 6 weeks after sowing and death 2 weeks later. The importance ofF. solani and A. pinodella has not been fully determined, but they probably cause only minor damage.


2008 ◽  
Vol 57 (5) ◽  
pp. 626-635 ◽  
Author(s):  
Regianne Umeko Kamiya ◽  
José Francisco Höfling ◽  
Reginaldo Bruno Gonçalves

The aim of this study was to analyse the frequency and expression of biosynthesis genes in 47 Streptococcus mutans isolates with different mutacin-producing phenotypes. Detection of the frequency and expression of genes encoding mutacin types I, II, III and IV were carried out by PCR and semi-quantitative RT-PCR, respectively, using primers specific for each type of biosynthesis gene. In addition, a further eight genes encoding putative bacteriocins, designated bsm 283, bsm 299, bsm 423, bsm 1889c, bsm 1892c, bsm 1896, bsm 1906c and bsm 1914, were also screened. There was a high phenotypic diversity; some Streptococcus mutans isolates presented broad antimicrobial spectra against other Streptococcus mutans clinical isolates, including bacteria resistant to common antibiotics, as well as Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Streptococcus pyogenes. The expression frequency of the bsm gene was higher than that of the previously characterized mutacins (I–IV). There was no positive correlation between the number of indicator strains inhibited (antimicrobial spectra) and the number of biosynthesis genes expressed (Spearman correlation test, r=−0.03, P>0.05). In conclusion, the high diversity of mutacin-producing phenotypes, associated with high frequency of expression of the biosynthesis genes screened, reveals a broad repertoire of genetic determinants encoding antimicrobial peptides that can act in different combinations.


2007 ◽  
Vol 20 (8) ◽  
pp. 966-976 ◽  
Author(s):  
Wenming Wang ◽  
Alessandra Devoto ◽  
John G. Turner ◽  
Shunyuan Xiao

The powdery mildew resistance genes RPW8.1 and RPW8.2 from Arabidopsis differ from the other isolated plant resistance (R) genes in their predicted protein domains and their resistance spectrum. The two homologous RPW8 genes encode small proteins featuring a predicted amino-terminal transmembrane anchor domain and a coiled-coil domain and confer resistance to a broad spectrum of powdery mildews. Here, we show that Arabidopsis plants expressing the RPW8 genes have enhanced resistance to another biotrophic pathogen, Hyaloperonospora parasitica, raising the possibility that the RPW8 genes may function to enhance salicylic-acid-dependent basal defenses, rather than as powdery-mildew-specific R genes. When overexpressed from their native promoters, the RPW8 genes confer enhanced resistance to the Cauliflower mosaic virus, but render plants more susceptible to the necrotrophic fungal pathogens Alternaria and Botrytis spp. Furthermore, we show that the RPW8 proteins appear to be localized to the endomembrane system, overlapping with the endoplasmic reticulum–associated small GTPase SAR1, and accumulate to higher levels in response to application of exogenous salicylic acid, one of the signaling molecules of plant defense.


Sign in / Sign up

Export Citation Format

Share Document