scholarly journals Pore Structure Identification of GMZ Bentonite with Different Water Content Based on Digital Image

2021 ◽  
Vol 861 (4) ◽  
pp. 042102
Author(s):  
Shi-Jia Ma ◽  
Jiang-Feng Liu ◽  
Yuan-Jian Lin ◽  
Na-Jing Guo ◽  
Fan Zhang ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yong-Gui Chen ◽  
Xue-Min Liu ◽  
Xiang Mu ◽  
Wei-Min Ye ◽  
Yu-Jun Cui ◽  
...  

In China, Gaomiaozi (GMZ) bentonite serves as a feasible buffer material in the high-level radioactive waste (HLW) repository, while its thermal conductivity is seen as a crucial parameter for the safety running of the HLW disposal. Due to the tremendous amount of heat released by such waste, the thermal conductivity of the buffer material is a crucial parameter for the safety running of the high-level radioactive waste disposal. For the purpose of improving its thermal conductivity, this research used the graphene oxide (GO) to modify the pure bentonite and then the nanocarbon-based bentonite (GO-GMZ) was obtained chemically. The thermal conductivity of this modified soil has been measured and investigated under various conditions in this study: the GO content, dry density, and water content. Researches confirm that the thermal conductivity of the modified bentonite is codetermined by the three conditions mentioned above, namely, the value of GO content, dry density, and water content. Besides, the study proposes an improved geometric mean model based on the special condition to predict the thermal conductivity of the compacted specimen; moreover, the calculated values are also compared with the experimental data.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Long Tan ◽  
Penglin Zheng ◽  
Qingbing Liu

Bentonite, when used as buffer/backfill material in the deep disposal of high-level radioactive waste (HLW), could undergo desiccation shrinkage or even cracking due to the heat released from HLW, impairing the efficiency of the barrier system. Furthermore, in-service buffer materials are inevitably in contact with the groundwater, which sometimes contain high salt concentrations. The groundwater salinity may modify the properties of bentonite and hence affect the process of desiccation and its performance. To investigate this effect, in this study, a series of temperature-controlled desiccation tests was conducted on compacted specimens of Gaomiaozi (GMZ) bentonite preliminarily saturated with two different saline solutions (NaCl and CaCl2) at the concentration varying from 0.5 to 2.0 mol/L. The experimental results indicated that, as the concentration of saline solution increases, the initial saturated water content of bentonite decreases, whereas the residual water content at the completion of the desiccation test increases. The water evaporation rate is reduced for the specimens saturated with a high-concentration saline solution, and CaCl2 has a more significant influence on water evaporation than NaCl. The evolution of cracks on the sample surface during the desiccation process can be divided into four stages: crack growth, maintenance, closure, and stabilization; an increase in the salt concentration effectively inhibits crack development. It was shown that the infiltration of saline solutions alters the microstructure of bentonite by changing the arrangement of clay particles from a dispersed pattern to more aggregate state, which results in a decrease in shrinkage strain and shrinkage anisotropy.


2018 ◽  
Vol 175 ◽  
pp. 01003
Author(s):  
Bingquan Sun ◽  
Jiajia Sun

This paper, from the point of view of improving compactness of density and crystal water content of radiation-proof concrete, using magnesite with high crystal water content as aggregate and alkaline potential water as mixing water, prepared ordinary density radiation-proof concrete and studied its mechanical properties, resistivity and pore structure. The results show that, compared to base ordinary concrete, the prepared concrete has better 28d compressive strength and resistivity, overall porosity decreases by 17%, and pore gradation at all ages improves significantly. It is indicated that the prepared magnesite aggregate radiation concrete has good density and durability, improves concrete radiation protection performance.


2010 ◽  
Vol 177 ◽  
pp. 530-532 ◽  
Author(s):  
Xin Gang Yu ◽  
Shi Song Luo ◽  
Yan Na Gao ◽  
Hong Fei Wang ◽  
Yue Xiang Li ◽  
...  

The pore structure and microstructure of the foam concrete was analyzed by scanning electron microscopy and light microscopy combined with digital image analysis. The results show that: (1) even-distributed fine and close pores resulting in high strength and low permeability; (2) uneven-distributed large size pores and open pores lead to low strength and high permeability; (3) light microscopy combined with digital image analysis is a cheap and convenient tool fitting for the pore structure analysis of the foam concrete; (4) scanning electron microscopy is very appropriate for the pore structure and microstructure analysis of the foam concrete.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Jin Liu ◽  
Dongmin Wang

Steam curing is an effective method to increase the hydration degree of binder containing phosphorus slag. The role of phosphorus slag in steam-cured concrete was investigated by determining the hydration heat, hydration products, nonevaporable water content, pore structure of paste, and the compressive strength and chloride ion permeability of concrete. The results show that elevated steam curing temperature does not lead to new crystalline hydration products of the composite binder containing phosphorus slag. Elevating steam curing temperature enhances the early hydration heat and nonevaporable water content of the binder containing phosphorus slag more significantly than increasing steam curing time, and it also results in higher late-age hydration degree and finer pore structure. For steam-cured concrete containing phosphorus slag, elevating curing temperature from 60°C to 80°C tends to decrease the late-age strength and increase the chloride permeability. However, at constant curing temperature of 60°C, the steam-cured concrete containing phosphorus slag can achieve satisfied demoulding strength and late-age strength and chloride permeability by extending the steam curing duration.


2014 ◽  
Vol 507 ◽  
pp. 295-299 ◽  
Author(s):  
Bo Zhang ◽  
Jin Hu ◽  
Meng Yuan Li

The non-evaporable water content, compressive strength, and pore distribution of steel slag paste cured under different curing temperature conditions were investigated in this paper. The non-evaporable water content of steel slag paste at early ages is obviously larger at higher curing temperature. At the age of 28 days, the non-evaporable water content of steel slag paste at normal curing temperature is close to that at high curing temperature, but the compressive strength of steel slag paste at normal curing temperature is much lower than that at high curing temperature. The pore structure of steel slag paste is much coarser than that of cement paste under the same conditions.


2021 ◽  
Author(s):  
Xinyu Cong ◽  
Yiqiu Tan ◽  
Shuang Lu ◽  
Zhaojia Wang ◽  
Tianyong Huang

Abstract Self-ignition coal gangue (SCG) used as one of precursors to fabricate aerated autoclaved concrete (AAC). Aiming at studying water absorptivity and frost resistance performance of self-ignition coal gangue aerated autoclaved concrete (SCGAAC), three-period water absorbing tests and freezing-thawing tests were carried out and the corresponding results were recorded and analyzed. In order to modify the water absorptivity of SCGAAC, foam stabilizer was applied to adjust pore structure while calcium stearate was expected to change hydrophilic feature of CG. It was demonstrated that the compressive strength of SCGAAC containing foam stabilizer or calcium stearate declined at different levels, although the porosity became lower slightly. For water absorptivity, foam stabilizer failed to decrease the water content at any period and even increased water absorbing rates. Calcium stearate controlled water absorbing rate successfully but the ultimate water content hardly reduced. All of the SCGAAC samples exhibited intact appearance after 50 freezing-thawing cycles and showed excellent frost resistance performance. Three models were proposed to predict water absorptivity and frost resistance performance of SCGAAC and the corresponding prediction results matched test resulted well.


2013 ◽  
Vol 699 ◽  
pp. 584-589 ◽  
Author(s):  
Neven Ukrainczyk ◽  
Eduard Koenders ◽  
Klaas van Breugel

This paper presents an image based numerical method proposed to obtain information regarding pore structure and organization of pores within materials based on 3D digital image input. The output of the numerical algorithm is a pore size distribution of materials. The algorithm is based on the combination of the two digital image processing algorithms: 1) a medial axis thinning algorithm to obtain 3D skeleton of the pore structure, and 2) the distance transform of an image. The method is tested on simple 2D and 3D microstructures of packed spheres, demonstrating the performance of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document