scholarly journals Antibacterial activity of aquatic extract of Myrtus communis leaves against Periodontitis isolated bacteria

2021 ◽  
Vol 880 (1) ◽  
pp. 012047
Author(s):  
Eman Mubdir Nayf ◽  
Hamzah Abdulrhaman Salman

Abstract Myrtus communis is an evergreen plant that can survive stressful environments and high-temperature seasons. Treatment using green plants was the most trended in recent years. The present study aimed to evaluate the antibacterial effects of Myrtus communis leaves against bacteria isolated from periodontitis. Fifty samples were collected from periodontitis subjects in both genders (female 32 % and male 68 %). The isolates were diagnosed by morphological characterization and biochemical tests. M. communis leaves were identified, collected, and prepared for extraction. The plant leaves were extracted using distilled water. The antibacterial susceptibility testing was performed by the well diffusion method. Antibiotics susceptibility patterns were executed using the disc diffusion method. All the isolates belonged to gram-positive bacteria. Among the isolated bacteria, 20, 18, and 12 were Lactobacillus spp., Streptococcus spp., and Staphylococcus aureus, respectively. The antibacterial susceptibility testing of M. communis extract showed a potential zone of inhibition against all the tested bacteria. Of the different concentrations, 30 mg/ml showed the highest zone of inhibition, 18.2 mm, 19.50 mm, and 30.66 mm against Streptococcus spp., Staphylococcus spp., and Lactobacillus spp. Among the tested antibiotics, ciprofloxacin and chloramphenicol exhibited the highest zone of inhibition against the tested bacteria. The aquatic extract of M. communis leaves was found to be effective against gram-positive bacteria. Further studies are warranted to investigate the active bio-compounds.

2018 ◽  
Vol 6 (2) ◽  
pp. 110-114
Author(s):  
Bimala Subba

Phytochemical and biological activities of methanolic extract of Taxus wallichiana Zucc. (Leaf, stem) were carried out. The brine shrimp bioassay showed T. wallichiana is pharmacologically active. The antibacterial potential was studied against one gram positive bacteria (Staphylococcus aureus) and one gram negative bacteria (Escherichia Coli) using Agar Well Diffusion Method. Stem of T. wallichiana showed significant zone of inhibition against gram positive bacteria while the leaf of T. wallichiana did not show significant zone of inhibition against both gram positive and gram negative bacteria. Antioxidant activity was evaluated by 2, 2-diphenyl-1-picryl hydrazyl (DPPH) free radical scavenging activity and FRAP assay. Both assay showed that T. wallichiana leaves has high antioxidant activities.Int. J. Appl. Sci. Biotechnol. Vol 6(2): 110-114


2016 ◽  
Vol 8 (3) ◽  
pp. 1497-1500
Author(s):  
Vandana Gupta ◽  
Rakesh Kumar ◽  
Deepika Chaudhary ◽  
Nirmal Yadav

The present study was aimed to examine and compare the antibacterial activity of hot methanolic extract of medicinal plants viz. Portulaca oleracea (purslane), Syzygium cumini (L.) (jamun), Psidium guajava (L.) (guava). Antibacterial activity was carried by using agar well diffusion method, against Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli). Results indicated that all the three plant extracts possess antibacterial property against Gram-positive bacteria and no activity was found against Gram-negative bacteria. Moderate zone of inhibition against Staphylococcus aureus and Bacillus subtilis was exhibited by S. cumini (L.) (11mm and 12mm) and P. guajava (L.) (10mm and 11mm) and weak zone of inhibition was exhibited by P. oleracea (5 mm and 6mm). In conclusion, S. cumini (L.) and P. guajava (L.) possess bettercapabilities of being a good candidate in search for natural antibacterial agent against infections and diseases causing Gram-positive bacteria as compared to P. oleracea.


2018 ◽  
Vol 15 (3) ◽  
pp. 627-633 ◽  
Author(s):  
Russel R. Ghanim ◽  
M. R. Mohammad ◽  
Adi M. Abdul Hussien

Graphene oxide (GO) nanosheets were prepared by a novel simplified Hummer's method. The morphological and cross section images of GO have been tested with field emission-scanning electron microscope (FE-SEM). The antibacterial activity of GO nansheets against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were investigated as a model for Gram-negative bacteria and Gram-positive bacteria respectively. Bacteriological tests were performed by agar well diffusion assay with different concentrations of GO nanosheets and the bacterial morphological change of two bacterial species has been studied by scanning electron microscope (SEM) before and after treated with GO nanosheets. These sheets have been approved to be an effective bactericide. The antibacterial activity of the nanosheets dispersion was measured by agar well diffusion method. Scanning electron microscopy (SEM) was used to investigate the biocidal action of this nanoscale material. The nanosheets of GO have shown a high antibacterial activity against Gram-positive bacteria. The results of the present work offer a novel assay to prepare GO nanosheets were it could be used as novel antibacterial agent in future for different areas of biomedical and pharmaceutical sciences, like biosensing, antibiotics, imaging, and drug delivery.


Author(s):  
Elaf Ayad Kadhem ◽  
Miaad Hamzah Zghair ◽  
Sarah , Hussam H. Tizkam, Shoeb Alahmad Salih Mahdi ◽  
Hussam H. Tizkam ◽  
Shoeb Alahmad

magnesium oxide nanoparticles (MgO NPs) were prepared by simple wet chemical method using different calcination temperatures. The prepared NPs were characterized by Electrostatic Discharge (ESD), Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). It demonstrates sharp intensive peak with the increase of crystallinty and increase of the size with varying morphologies with respect to increase of calcination temperature. Antibacterial studies were done on gram negative bacteria (E.coli) and gram positive bacteria (S.aureus) by agar disc diffusion method. The zones of inhibitions were found larger for gram positive bacteria than gram negative bacteria, this mean, antibacterial MgO NPs activity more active on gram positive bacteria than gram negative bacteria because of the structural differences. It was found that antibacterial activity of MgO NPs was found it has directly proportional with their concentration.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Eti Nurwening Sholikhah ◽  
Maulina Diah ◽  
Mustofa ◽  
Masriani ◽  
Susi Iravati ◽  
...  

Pycnarrhena cauliflora (Miers.) Diels., local name sengkubak, is one of indigenous plants from West Kalimantan that has been used as natural flavor. Pycnorrhena cauliflora is one of species of Menispermaceae family which is rich in bisbenzylisoquinoline alkaloids. This alkaloids are known to have various biological activities including antiprotozoal, antiplasmodial, antifungal and antibacterial activities. This study aimed to investigate antimicrobial activity of  the P. cauliflora (Miers.) Diels. methanolic extracts against gram-positive and gram-negative bacteria. The methanolic extract of P. cauliflora (Miers.) Diels., root, leaf and stem were prepared by maceration. The disk-diffusion method was then used to determine the antimicrobial activity of the extracts against Streptococcus pyogenes, S. mutants, Staphylococcus aureus, S. epidermidis, Salmonella typhi, Shigella flexneri, Pseudomonas aeruginosa and Escherichia coli after 18-24 h incubation at 37 oC. Amoxicillin was used as positive control for gram-positive bacteria and ciprofloxacin was used as gram-negative bacteria. The inhibition zones were then measured in mm. Analysis were conducted in duplicates. The results showed in general the methanolic extracts of P. cauliflora (Miers.) Diels. root (inhibition zone diameter= 10-23 mm) were more active than that leaf (0-15 mm) and stem (0-17 mm) extracts against gram-positive bacteria. The zone inhibition diameter of amoxicillin as positive control was 8-42 mm. In addition, the methanolic extracts of P. cauliflora (Miers.) Diels. root (12-17 mm) were also more active than that leaf (0-12 mm) and stem (0-12 mm) extracts against gram-negative bacteria. The zone inhibition diameter of ciprofloxacin as positive control was 33-36 mm. In conclusion, the methanolic extract of P. caulifloria (Miers.) Diels. root is the most extract active against both gram-positive and gram-negative bacteria. Further study will be focused to isolate active compounds in the methanolic extract of the root.


Revista CERES ◽  
2013 ◽  
Vol 60 (5) ◽  
pp. 731-734 ◽  
Author(s):  
Álan Alex Aleixo ◽  
Karina Marjorie Silva Herrera ◽  
Rosy Iara Maciel de Azambuja Ribeiro ◽  
Luciana Alves Rodrigues dos Santos Lima ◽  
Jaqueline Maria Siqueira Ferreira

Baccharis trimera (Less.) (Asteraceae), popularly know as "carqueja", is a species commonly used in folk medicine for the treatment or prevention of diseases. In this context, the purpose of this work was to study the antibacterial activity of crude hydroalcoholic extract from Baccharis trimera against Gram-positive bacterial strains (Staphylococcus aureus ATCC 29213, Staphylococcus saprophyticus ATCC 15305, Staphylococcus epidermidis ATCC 12228, Enterococcus faecalis ATCC 19433) and Gram-negative bacteria (Escherichia coli EHEC ATCC 43895, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 27736, Salmonella typhi ATCC 19430) of clinical interest. Antibacterial susceptibility was evaluated by broth microdilution assay following the CLSI (formerly the NCCLS) guidelines. The extract from B. trimera showed antibacterial activity against Gram-positive bacteria and the most interesting result was obtained against S. epidermidis that presented Minimal Inhibitory Concentration of 250μg/mL. These results indicate that B. trimera have bacterisostatic potential against Gram-positive bacterial strains of medical interest and could serve as a base for further studies on the use of isolated compounds from this species as future antimicrobials.


2017 ◽  
Vol 14 (4) ◽  
pp. 801-807
Author(s):  
Baghdad Science Journal

In this work, lead oxide nanoparticles were prepared by laser ablation of lead target immersed in deionized water by using pulsed Nd:YAG laser with laser energy 400 mJ/pulse and different laser pulses. The chemical bonding of lead oxide nps was investigated by Fourier Transform Infrared (FTIR); surface morphology and optical properties were investigated by Scanning Electron Microscope (SEM) and UV-Visible spectroscopy respectively, and the size effect of lead oxide nanoparticles was studied on its antibacterial action against two types of bacteria Gram-negitive (Escherichia coli) and Gram-positive (Staphylococcusaurus) by diffusion method. The antibacterial property results show that the antibacterial activity of the Lead oxide NPs was inversely proportional to the size of the nanoparticles in both Gram-negative and Gram-positive, and also it has been found that Gram-positive bacteria possess have greater sensitivity and less resistance to the lead oxide nanoparticles compared with Gram-negative bacteria.


2019 ◽  
pp. 27-32
Author(s):  
Emőke Mihok ◽  
Éva György ◽  
Endre Máthé

Wild berry is an excellent source of phytonutrients and/or bioactive compounds associated with significant therapeutic properties, so that they have been utilized in folk medicine and traditional nutrition throughout centuries. Multiple health-promoting effects, such as anti-inflammatory, anti-diabetic, anti-heart and coronary disease properties were attributed to such wild berries. It has also been proved that berries could feature antimicrobial effects that could be of a great importance for the prevention of food-feed poisoning and fighting back antibiotic resistance. In this study, we investigated the antimicrobial properties of lingonberry (Vaccinium vitis-idaea), raspberry (Rubus idaeus) and blackberry (Rubus fruticosus) crude and ethanolic extracts prepared from fruits obtained from the spontaneous flora of Eastern Carpathian Mountains situated in Transylvania. The antimicrobial effect of crude and alcoholic extracts were assessed on four Gram-negative, five Gram-positive bacteria and one yeast species using the agar diffusion method. The studied bacteria can cause food or feed spoilage and foodborne diseases. Our results indicate the significant inhibitory effect of lingonberry extracts in the case of Gram-negative bacteria like Proteus vulgaris and Salmonella Hartford, while among Gram-positive bacteria the strongest inhibitory effect was observed for Bacillus species like B. cereus, B. subtilis, B. mojavensis and Micrococcus luteus. The raspberry and blackberry extracts featured milder inhibitory effects in the case of the studied bacteria species. Furthermore, we have studied the crude or ethanolic extract combinations associated antimicrobial effects synergistic/additive or antagonistic properties. Interestingly, the triple and double ethanolic extract mixes had stronger antimicrobial properties, whereas the crude extract mixes showed relatively reduced effects, if any. Our results indicate that the antimicrobial activity of studied fruit extracts obtained from wild berries can vary upon the applied extraction method and their combination formulae, so that all these considerations must be taken into account when such fruit extracts are considered for foodstuff development.


2020 ◽  
Vol 7 (11) ◽  
pp. 276-284
Author(s):  
Garga M. A. ◽  
Manga S. B. ◽  
Rabah A.B. ◽  
Tahir H. ◽  
Abdullahi M. ◽  
...  

The aim of this study was to investigate the antibacterial effect and identify the phytochemical constituents of Moringa oleifera leaves and seeds extract on Staphylococcus aureus (S. aureus) clinical isolates using agar well diffusion method. The samples were collected from the premises of Usmanu Danfodiyo University, Sokoto. The Seeds and Leaves were collected fresh. They were extracted using methanol and ethyl acetate. Various concentrations from 100mg/ml to 500mg/ml were prepared. The test bacteria used is Staphylococcus aureus obtained from Microbiology laboratory of the Usmanu Danfodiyo University. The bacteria were re-identified using biochemical tests. The bacterial inoculums were standardized to McFarland scale 0.5. Zone of inhibition were read after 24 hours of incubation at 370C.The results of the antibacterial study revealed that the methanolic leaves extracts at 500 mg/ml had effect on S. aureus with zone of inhibition of 20mm. The methanolic seed extract have effect on S. aureus with zone of inhibition of 19.5mm. The MIC for the leave and seed extracts for Staphylococcus aureus was 250mg/ml. The MBC was 500mg/ml. The results of the phytochemical analysis revealed the presence of flavonoid, tannins, saponins, cardiac glycosides, alkaloids, volatile oil, saponin glycosides, and glycosides but anthraquinone and steroids were absent in the extracts. The zones of inhibition showed that both the methanolic and ethyl acetate extracts at 500mg/ml were active to all the tested bacteria. ANOVA and Duncan Multiple Mean Range test was used to analyze the data. Based on Duncan’s grouping, there is significant difference between the solvents and the concentrations used.


2020 ◽  
Vol 16 (2) ◽  
Author(s):  
P. M. Ridzuan ◽  
Hairul Aini Hamzah ◽  
Anis Shah ◽  
Norazian Mohd Hassan ◽  
Baharudin Roesnita

Antibacterial activity of different types of P. odorata leaf extracts was evaluated in combination with standard antibiotics. Persicaria. odorata leaves were extracted with n-hexane (n-hex), dichloromethane (DCM) and methanol (MeOH).  Each extract was applied on vancomycin (30µg), erythromycin (15µg) and gentamicin (10µg) discs, respectively. Disk diffusion method was used to evaluate the synergistic activity of each combination on Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes, Streptococcus pneumoniae, Pseudomonas aeruginosa, Salmonella typhi, and Escherichia coli. Minimum inhibitory concentration (MIC) and gas chromatography mass spectrometry (GCMS) analysis was performed on the active extract. Synergistic effects seen were mainly from the n-hex+antibiotics combinations, mainly on the Gram-positive bacteria (7 additive, 5 antagonistic), with MIC range from 50 µg/ml to 100 µg/ml, as well as Gram-negative bacteria (2 additive, 2 indifferent, 5 antagonistic). In particular, synergism showed by the combination of n-hex+van were all additive against the susceptible bacteria. DCM extract combination showed synergistic effects on three Gram-positive species (S. aureus, S. epidermidis, S. pyogenes). Meanwhile, MeOH+antibiotics combination showed significant additive synergistic effects (p<0.05) on S. aureus and S. epidermidis.  The major compounds of leaves extract were decanal and β-citral. n-Hex extract superiorly inhibited Gram-positive bacteria growth as compared to DCM and MeOH extracts. The additive synergistic property of the n-hex P. odorata extract could be further studied for possible use as an antibacterial agent.


Sign in / Sign up

Export Citation Format

Share Document