scholarly journals Impact Based Forecast analysis uses multi-model ensemble data and National Digital Forecast data in ArcMap 10.8.1

2021 ◽  
Vol 893 (1) ◽  
pp. 012076
Author(s):  
R S Salman ◽  
Ayufitriya

Abstract The number of people seeking public weather service information is growing, making it a challenge for all bureaus of meteorology around the world. Although, in the last decade, routine public weather service information has brought excellent weather forecast information for people and services to people with rapid, accurate, widely available, and easy to grasp information, which they may get in a variety of places, such as a website or an application. However, in this decade and in the future, it will not be enough. People want information such as what the impact should be and how people react to that impact, which should be displayed on a static Geographic Information System (GIS) map in a standard format. We will investigate and create an IBF map based on multi-model ensemble data and National Digital Forecast (NDF) data in this work. Then, using the GIS software ArcMap 10.8.1, we rank and score the geographic disaster data to determine the impact area. To create the effect area, we will employ primary and advanced methods of ArcMap 10.8.1. The information on the IBF map will be immediately understood by stakeholders and users.

2016 ◽  
Author(s):  
Rolf Hut ◽  
Niels Drost ◽  
Maarten van Meersbergen ◽  
Edwin Sutanudjaja ◽  
Marc Bierkens ◽  
...  

Abstract. eWaterCycle is an open source hyperresolution (10 km × 10 km) global hydrological forecasting framework that runs an ensemble of hydrological models. Forced with a weather forecast ensemble, it predicts river discharge and river discharge uncertainty nine days ahead. Daily satellite soil moisture observations are assimilated into the state of the model ensemble using an Ensemble Kalman Filter. We demonstrate that it is feasible to build such a system using pre-exisiting, open source, components that communicate through standard interfaces. The PCRGLOBWB2.0 (van Beek et al., 2011; Sutanudjaja et al., 2014) model is used to model hydrology globally, forced with GFS (Kanamitsu, 1989; Kanamitsu et al., 1991; Moorthi et al., 2001) weather forecast. The operational soil moisture product from the HSAF (Drusch et al., 2009; De Rosnay et al., 2011) service is assimilated into the model ensemble using OpenDA (Velzen et al., 2016), a data assimilation framework. Output of the model ensemble is presented in a Cesium (Analytical Graphics, 2011) based visualization. All communication between framework components is through standard file types (NetCDF)(Rew and Davis, 1990) and services (Web Map Service) (de La Beaujardiere, 2006). Communication between model and data assimilation framework is through the Basic Model Interface (BMI) (Peckham et al., 2013). The forecasts is available at forecast.ewatercycle.org. By using standard open interfaces, the different components of the model can be replaced with relative ease, facilitating future model comparison studies without the need of extensive Computer Science support. This makes eWaterCycle, in addition to an operational forecasting model, a testbed environment where the impact of different model structures, input sources and/or data assimilation schemes can easily be studied. Setup instructions to run the eWaterCycle project on local hardware are provided, allowing the hydrological community to build on this open source framework.


2021 ◽  
Vol 117 (3/4) ◽  
Author(s):  
Mary-Jane M. Bopape ◽  
Ezekiel Sebego ◽  
Thando Ndarana ◽  
Bathobile Maseko ◽  
Masindi Netshilema ◽  
...  

Severe weather events associated with strong winds and flooding can cause fatalities, injuries and damage to property. Detailed and accurate weather forecasts that are issued and communicated timeously, and actioned upon, can reduce the impact of these events. The responsibility to provide such forecasts usually lies with government departments or state-owned entities; in South Africa that responsibility lies with the South African Weather Service (SAWS). SAWS is also a regional specialised meteorological centre and therefore provides weather information to meteorological services within the Southern African Development Community (SADC). We evaluated SAWS weather information using near real-time observations and models on the nowcasting to short-range forecasting timescales during two extreme events. These are the Idai tropical cyclone in March 2019 which impacted Mozambique, Zimbabwe and Malawi resulting in over 1000 deaths, and the floods over the KwaZulu-Natal (KZN) province in April 2019 that caused over 70 deaths. Our results show that weather models gave an indication of these systems in advance, with warnings issued at least 2 days in advance in the case of Idai and 1 day in advance for the KZN floods. Nowcasting systems were also in place for detailed warnings to be provided as events progressed. Shortcomings in model simulations were shown, in particular on locating the KZN flood event properly and over/underestimation of the event. The impacts experienced during the two events indicate that more needs to be done to increase weather awareness, and build disaster risk management systems, including disaster preparedness and risk reduction.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 816
Author(s):  
Rosa Lo Frano

The impact of an aircraft is widely known to be one of the worst events that can occur during the operation of a plant (classified for this reason as beyond design). This can become much more catastrophic and lead to the loss of strength of/collapse of the structures when it occurs in the presence of ageing (degradation and alteration) materials. Therefore, since the performance of all plant components may be affected by ageing, there is a need to evaluate the effect that aged components have on system performance and plant safety. This study addresses the numerical simulation of an aged Nuclear Power Plant (NPP) subjected to a military aircraft impact. The effects of impact velocity, direction, and location were investigated together with the more unfavorable conditions to be expected for the plant. The modelling method was also validated based on the results obtained from the experiments of Sugano et al., 1993. Non-linear analyses by means of finite element (FE) MARC code allowed us to simulate the performance of the reinforced concrete containment building and its impact on plant availability and reliability. The results showed that ageing increases a plant’s propensity to suffer damage. The damage at the impact area was confirmed to be dependent on the type of aircraft involved and the target wall thickness. The greater the degradation of the materials, the lower the residual resistance capacity, and the greater the risk of wall perforation.


2021 ◽  
Vol 9 (1) ◽  
pp. 55
Author(s):  
Darshana T. Dassanayake ◽  
Alessandro Antonini ◽  
Athanasios Pappas ◽  
Alison Raby ◽  
James Mark William Brownjohn ◽  
...  

The survivability analysis of offshore rock lighthouses requires several assumptions of the pressure distribution due to the breaking wave loading (Raby et al. (2019), Antonini et al. (2019). Due to the peculiar bathymetries and topographies of rock pinnacles, there is no dedicated formula to properly quantify the loads induced by the breaking waves on offshore rock lighthouses. Wienke’s formula (Wienke and Oumeraci (2005) was used in this study to estimate the loads, even though it was not derived for breaking waves on offshore rock lighthouses, but rather for the breaking wave loading on offshore monopiles. However, a thorough sensitivity analysis of the effects of the assumed pressure distribution has never been performed. In this paper, by means of the Wolf Rock lighthouse distinct element model, we quantified the influence of the pressure distributions on the dynamic response of the lighthouse structure. Different pressure distributions were tested, while keeping the initial wave impact area and pressure integrated force unchanged, in order to quantify the effect of different pressure distribution patterns. The pressure distributions considered in this paper showed subtle differences in the overall dynamic structure responses; however, pressure distribution #3, based on published experimental data such as Tanimoto et al. (1986) and Zhou et al. (1991) gave the largest displacements. This scenario has a triangular pressure distribution with a peak at the centroid of the impact area, which then linearly decreases to zero at the top and bottom boundaries of the impact area. The azimuthal horizontal distribution was adopted from Wienke and Oumeraci’s work (2005). The main findings of this study will be of interest not only for the assessment of rock lighthouses but also for all the cylindrical structures built on rock pinnacles or rocky coastlines (with steep foreshore slopes) and exposed to harsh breaking wave loading.


2018 ◽  
Vol 49 ◽  
pp. 02020
Author(s):  
Hery Suliantoro ◽  
Nurul Fitriani ◽  
Bagus Hario Setiadji

Risk is a condition caused by uncertainty. Risks will occur on any construction project, including bridge construction projects. Efforts that can be taken to minimize the impact of these risks are to engage in risk management activities. This research was conducted on bridge construction work on toll road procurement project in Pejagan-Pemalang, Pemalang-Batang and Salatiga-Kertasura. The purpose of this research is to analyze the risk of bridge development project in toll road project using Risk Breakdown Structure (RBS) method and then the result as database in discussing risk response strategy. The bridge construction project has 36 risks that are divided into six groups: materials and equipment, design, human resources, finance, management, nature and environmental conditions. Bad weather risks are the higest risk and seasonal risk causing temporary work stoppages. This risk-response strategy is avoidance. Short-term avoidance response strategy is to add shift workers, install tents and add additives in the acceleration of the process of maturation of concrete. The long-term avoidance response strategy is to evaluate and rearrange the work schedule by considering the weather forecast report.


2013 ◽  
Vol 797 ◽  
pp. 123-128
Author(s):  
Ming He Liu ◽  
Xiu Ming Zhang ◽  
Shi Chao Xiu

In the low-speed grinding process, the force generated when the wheel grinding the workpiece is the result of sliding friction, plough and cutting. While in the actual study, the cutting process has attracted extensive attention. Impact effect to the entire grinding process on the contact is ignored so that the error exists between the calculation grinding force and the measured grinding force. Basing on the shock effect to the grinding process, the paper divides the contact area into impact area and cutting area. And the model of impact load generated from single grit is built. Moreover, the grinding force theoretical calculation model and total grinding force mathematical model is also constructed by analyzing the impact load affecting on the grinding force mechanism. Finally experimental study verifies the correctness of theoretical analysis.


2021 ◽  
Author(s):  
Laura Müller ◽  
Petra Döll

<p>Due to climate change, the water cycle is changing which requires to adapt water management in many regions. The transdisciplinary project KlimaRhön aims at assessing water-related risks and developing adaptation measures in water management in the UNESCO Biosphere Reserve Rhön in Central Germany. One of the challenges is to inform local stakeholders about hydrological hazards in in the biosphere reserve, which has an area of only 2433 km² and for which no regional hydrological simulations are available. To overcome the lack of local simulations of the impact of climate change on water resources, existing simulations by a number of global hydrological models (GHMs) were evaluated for the study area. While the coarse model resolution of 0.5°x0.5° (55 km x 55 km at the equator) is certainly problematic for the small study area, the advantage is that both the uncertainty of climate simulations and hydrological models can be taken into account to provide a best estimate of future hazards and their (large) uncertainties. This is different from most local hydrological climate change impact assessments, where only one hydrological model is used, which leads to an underestimation of future uncertainty as different hydrological models translate climatic changes differently into hydrological changes and, for example, mostly do not take into account the effect of changing atmospheric CO<sub>2</sub> on evapotranspiration and thus runoff.   </p><p>The global climate change impact simulations were performed in a consistent manner by various international modeling groups following a protocol developed by ISIMIP (ISIMIP 2b, www.isimip.org); the simulation results are freely available for download. We processed, analyzed and visualized the results of the multi-model ensemble, which consists of eight GHMs driven by the bias-adjusted output of four general circulation models. The ensemble of potential changes of total runoff and groundwater recharge were calculated for two 30-year future periods relative to a reference period, analyzing annual and seasonal means as well as interannual variability. Moreover, the two representative concentration pathways RCP 2.6 and 8.5 were chosen to inform stakeholders about two possible courses of anthropogenic emissions.</p><p>To communicate the results to local stakeholders effectively, the way to present modeling results and their uncertainty is crucial. The visualization and textual/oral presentation should not be overwhelming but comprehensive, comprehensible and engaging. It should help the stakeholder to understand the likelihood of particular hazards that can be derived from multi-model ensemble projections. In this contribution, we present the communication approach we applied during a stakeholder workshop as well as its evaluation by the stakeholders.</p>


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Simon Chester Evans ◽  
Jennifer Bray ◽  
Claire Garabedian

Purpose The purpose of this paper is to report on an independent evaluation of a three-year “Creative Ageing” programme, focussing on the impacts for participants and factors promoting successful delivery of sessions. Design/methodology/approach Artists provided feedback through reflective journals and questionnaires, while the views of care staff and participants were also captured in a standard format at the end of each arts session. Thematic analysis of the qualitative data identified common themes. Findings Twenty-three arts projects were delivered across a range of settings and through diverse art forms including dance, drama, music, visual arts and poetry. They reached nearly 2,200 participants who recorded over 8,100 session attendances in total. Participation in high quality creative experiences improved well-being for older people, as well as increasing social interaction and reducing isolation. Several factors facilitated successful implementation and delivery of the activities, particularly the need to hold planning meetings with staff to provide guidance around participant numbers and suitability, minimising disruption of the sessions and the supportive role of staff during the sessions. Opportunities for reflection enabled artists to address potential challenges and adapt their practice to meet the needs and preferences of participants and to the complexities of diverse settings. Originality/value Previous research has largely focussed on the impact of activities in a single setting. This study supports the role of creative arts in increasing social interaction as an attempt to tackle isolation and loneliness, both for older people living in the community and for those living in a communal setting such as care homes and supported living schemes.


Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 484 ◽  
Author(s):  
Ana Firanj Sremac ◽  
Branislava Lalić ◽  
Milena Marčić ◽  
Ljiljana Dekić

The aim of this research is to present a weather-based forecasting system for apple fire blight (Erwinia amylovora) and downy mildew of grapevine (Plasmopara viticola) under Serbian agroecological conditions and test its efficacy. The weather-based forecasting system contains Numerical Weather Prediction (NWP) model outputs and a disease occurrence model. The weather forecast used is a product of the high-resolution forecast (HRES) atmospheric model by the European Centre for Medium-Range Weather Forecasts (ECMWF). For disease modelling, we selected a biometeorological system for messages on the occurrence of diseases in fruits and vines (BAHUS) because it contains both diseases with well-known and tested algorithms. Several comparisons were made: (1) forecasted variables for the fifth day are compared against measurements from the agrometeorological network at seven locations for three months (March, April, and May) in the period 2012–2018 to determine forecast efficacy; (2) BAHUS runs driven with observed and forecast meteorology were compared to test the impact of forecasted meteorological data; and (3) BAHUS runs were compared with field disease observations to estimate system efficacy in plant disease forecasts. The BAHUS runs with forecasted and observed meteorology were in good agreement. The results obtained encourage further development, with the goal of fully utilizing this weather-based forecasting system.


2018 ◽  
Vol 157 ◽  
pp. 02012 ◽  
Author(s):  
Marián Handrik ◽  
Milan Vaško

The article deals with the design and testing of a computational model for multi-body contact of deformable bodies in the flowing fluid. The computational model will be designed to allow easy modify the impact area of deformable bodies and their shape. The computational model must allow the application of an endless cycle of bodies impact with the possibility of restarting and calculating the following time intervals for collision of bodies.


Sign in / Sign up

Export Citation Format

Share Document