scholarly journals Impact of Indian almond leaves on aquarium water quality

2021 ◽  
Vol 920 (1) ◽  
pp. 012008
Author(s):  
S Shams ◽  
J N Sahu ◽  
M Zambree ◽  
A Taha ◽  
R R Karri

Abstract There are very few studies done to understand the impact of Indian almond leaves (IAL) on aquarium water quality. Therefore, in this study, Indian almond leaves (IAL) were used to investigate the impacts on water quality in an aquarium with Betta fish as they are hardy fish, tolerant to changes in water quality, comparatively cheaper and more readily available in tropical countries. For this study, the powdered form of IAL was used for faster dilution or mixing. As for the aquarium tank, smaller tanks with a capacity of 4.5 litres are used since Betta fish is small in size and it is easy to be accommodated in the aquarium. The various dosage of IAL in power form (0-200 mg/L) was used to determine physical, chemical and biological parameters of aquarium water quality in the presence of Betta fish. The parameters were Biochemical Oxygen Demand (BOD5), Dissolved Oxygen (DO), turbidity, pH, chlorine and survivability test and tests were conducted on day 1, 3, 7, 14, 21 and 28. All experiments had an increasing value of DO until Day 21 and gradually decreased, while BOD5 increased with increased IAL dosage. Ammonia concentration increased between day 5-10 and then started to decline at day 21 and pH values were decreasing with increased IAL dosage. The total coliform test has the highest total coliform count on day 28 for IAL dosage. The study revealed that Betta fish could survive for 28 days without any application of de-chlorinator. The optimum dosage of 50 mg/L of IAL can eliminate any requirement for de-chlorination for Betta fish.

1992 ◽  
Vol 27 (2) ◽  
pp. 301-310
Author(s):  
Agnes G. Pulvermüller ◽  
Heidulf E. Müller

Abstract The survey of the ecological condition of eight lakes within the city limits of Freiburg included hydrochemical measurements and analyses (oxygen profiles, Secchi depth, pH, biochemical oxygen demand) together with biological parameters (chlorophyll a, phytoplanktonbiomass, Escherichia coli counts), as well as parasitic examinations. Only some of the investigated parameters are presented here. Seven of the eight lakes were found to be eutrophic. The process of eutrophication appears to be still in progress. One lake can be considered to be hypertrophic. Schistosome dermatitis was observed. The water quality in general was considered to be acceptable; suggestions to maintain or improve the water quality are made.


1998 ◽  
Vol 38 (10) ◽  
pp. 23-30
Author(s):  
Sarah Jubb ◽  
Philip Hulme ◽  
Ian Guymer ◽  
John Martin

This paper describes a preliminary investigation that identified factors important in the prediction of river water quality, especially regarding dissolved oxygen (DO) concentration. Intermittent discharges from combined sewer overflows (CSOs) within the sewerage, and overflows at water reclamation works (WRW) cause dynamic conditions with respect to both river hydraulics and water quality. The impact of such discharges has been investigated under both wet and dry weather flow conditions. Data collected from the River Maun, UK, has shown that an immediate, transient oxygen demand exists downstream of an outfall during storm conditions. The presence of a delayed oxygen demand has also been identified. With regard to modelling, initial investigations used a simplified channel and the Streeter-Phelps (1925) dissolved oxygen sag curve equation. Later, a model taking into account hydrodynamic, transport and dispersion processes was used. This suggested that processes other than water phase degradation of organic matter significantly affect the dissolved oxygen concentration downstream of the location of an intermittent discharge. It is proposed that the dynamic rate of reaeration and the sediment oxygen demand should be the focus of further investigation.


2015 ◽  
Vol 17 (1) ◽  
pp. 162-174 ◽  

<div> <p>This paper presents an assessment of the impact of uncontrolled and unscientific disposal of MSW on ground water in Dhanbad city, India. In this study, ground water quality around municipal solid waste disposal sites was investigated. Ground water quality analysis was carried out on samples collected at various distances from two disposal sites. The study has revealed that the ground water quality near dumping sites does not conform to the drinking water quality standards as per IS:10500. The impacts of indiscriminate dumping activity on ground water appeared most clearly as high concentrations of total dissolved solids, electrical conductivity, chlorides, chemical oxygen demand, and sulphates. High amount of metals like Na, K, Ca, Mg, Cd, Cu, Ni, Fe, Zn and Mn has also been detected in the groundwater samples near dumping area. Leachate characterization study also reveals high potential for groundwater contamination. Presence of feacal coliform contamination in groundwater samples indicates potential health risk for individuals exposed to this water.&nbsp;</p> </div> <p>&nbsp;</p>


2018 ◽  
Vol 10 (5) ◽  
pp. 1373-1392
Author(s):  
Taina Turial da Silva ◽  
Kamila Soares do Espírito Santo ◽  
Silvia T. Matsumoto ◽  
Josimar Ribeiro

Author(s):  
Gilbert K. Gaboutloeloe ◽  
Gugu Molokwe ◽  
Benedict Kayombo

The impact of partially treated wastewater on the water quality of Notwane river stretch in the Gaborone region of Botswana was investigated. Water samples collected at effluent discharge point and three other sampling sites downstream were analyzed for pH, temperature, Biological Oxygen Demand (BOD5), Ammonia-nitrogen (Ammonia-N) and Nitrate-nitrogen (Nitrate-N). Sampling was conducted bi-weekly between February 2013 and April 2013. The ranges of measured parameters were:  pH (7.6-8.5), temperature (22-23ºC), BOD5 (11.2-27.0 mg/l), Ammonia-N (2.4-60.5 mg/l), Nitrate-N (20.6-28.6 mg/l). Analysis of variance, Games-Howel multiple comparisons and Pearson correlation were used to separate variable means. The results signal river non-point pollution due to runoff inflow of organics mainly from land use and domestic waste dumping by nearby dwellings. Temperature, BOD5, and pH range values were all within the Botswana Bureau of Standards (BOBS) limit while the maximum Ammonia-N and Nitrate-N were above BOBS limit by 50.5 mg/l and 6.6 mg/l, respectively. Regulations on indiscriminate waste dumping and discharge standards adherence should be enforced.


Author(s):  
Sayyid Arrasyid ◽  
Zahidah Hasan ◽  
Izza Mahdiana Apriliani ◽  
Heti Herawati

Cirata Reservoir is one of the three cascade reservoirs fed by the Citarum Watershed with an area of ​​62 km2 (6.200 ha) and has a water volume of 1.900 million m3. The great potential of the waters in the Cirata Reservoir is utilized by the local community as a source of livelihood, namely by conducting aquaculture activities using floating net cages (FNC) in excess. FNC is thought to be a source of waste that reduces reservoir water quality. This research aims to determine the impact of FNC cultivation on primary productivity with different FNC densities at each station. The research was conducted in Cianjur Regency by taking on three stations, namely in the areas of Jangari, Maleber, and Patok Beusi on November 6 - December 8, 2019. The method used in the research was purposive sampling then analyzed in detail and quantitatively. The results show that reservoir waters have an average of physical parameters, namely temperature 32.2-32.6oC, transparency 0.59-0.68 meters, pH 7.1-7.3, carbon dioxide 15.4-16.1 mg / l, Dissolved Oxygen 6.9-7.3 mg / l, Biochemical Oxygen Demand 6.1-7.8 mg / l, nitrate 0.208-0.222 mg / l, ammonia 0.002833-0.003056 mg / l, phosphate 0,165-0,167 mg / l and primary productivity 240,36-277,90 mgC/m3/hour. This shows that the water indicator is still classified as good because it does not exceed the water quality standard.


Author(s):  
L. O. Bobor ◽  
C. M. Umeh

The indiscriminate disposal of industrial effluents and solid wastes in surface water bodies is detrimental to humans and aquatic organisms. Water quality monitoring is critical to identify pollutants of concern and develop effective management strategies. Hence, this study was conducted to assess the impact of waste disposal on the water quality of Aba Waterside River, Ogbor hill, Aba. Grab samples were collected upstream, midstream and downstream and some physicochemical and microbiological parameters were analyzed in accordance with standard methods for the analysis of water and wastewater. The results were compared with the Nigerian standard for drinking water quality and the national environmental effluent limitation regulations. Turbidity levels (10 -31mg/l) exceeded the maximum permissible levels for drinking water (5mg/l) and may be associated with higher levels of embedded disease-causing microbes and potentially harmful organic and inorganic substances. The biological oxygen demand midstream (1960mg/l) was remarkably high due to the effluent discharged from the abattoirs at that point. Fecal coliforms (3-198MPN/100ml) were detected in all samples, indicating the presence of other potentially harmful microorganisms. The findings of this study indicate that the water is unsuitable for direct drinking water purposes and stringent water quality control measures should be implemented.


Author(s):  
Azad Kannaujiya

Gomati River originate from Madhoganj Tanda village in Pilibhit district, U.P. it passes through the district of Shahjahanpur, kheri, Hardoi, Sitapur, Janpur and ultimately merge in Ganga. River water is significant for every living organism as well as aquatic life. Water pollution is a major global problem. Modernization and urbanization have polluted the river water and degraded the status. All over the world we are seeing that drain is the main source of water pollution especially for rivers flowing within the city. This drain generally carries industrial effluent, domestic waste, sewage and medicinal waste resulting in poor water quality. Gomati River receives industrial as well as domestic waste from various drains of Lucknow city. As Gomati river is the only source of surface water near the communities. A total 20 parameters namely Temperature, pH, Turbidity, Conductivity, Total dissolved solids (TDS), Total suspended solids (TSS), Total solids (TS), Dissolved oxygen (DO), Biological oxygen demand (BOD) Chemical oxygen demand (COD), Alkalinity, Total hardness, Calcium as ca, Magnesium as Mg, Chloride, Fluoride, Sulphate as So4, Nickel as Ni, Lead as Pb, and Zinc as Zn where analysed and their variation is discussed to obtain the impact of effluents on water quality. From the result it was found higher than the permissible limit of WHO and BIS.


2017 ◽  
Vol 16 (1) ◽  
pp. 75-85
Author(s):  
O. E. OMOFUNMI ◽  
J. K. . ADEWUMI ◽  
A. F. ADISA ◽  
S. O. ALEGBELEYE

Catfish production is one of the largest segments of fish culture in Lagos State, Nigeria. However, catfish effluents, which usually deteriorate the environment, need to be controlled. The effect of paddle-wheel aerator in catfish effluent was evaluated. The volume of catfish effluent was collected into two basins and diluted at given ratios. The paddle-wheel aerator was installed in one basin, while another basin served as control in determining the impact of paddle wheel aerator on catfish effluents. Water qualities such as Total Suspended Solids (TSS), Total Nitrogen (TN), Total Phosphorus (TP), Total Ammonia (TNH3) and Nitrite (NO2-N) and Biochemical oxygen demand (BOD5) examined and ana-lysed. Results indicated that paddle-wheel aerator reduced TSS (24.4±1.5 %), TN2-N (53.3±1.2 %) , TNH3-N (65.2±1.2 %) , NO2-N (97.1±1.1 %) , TP (61.8±1.1 %) and BOD5 (54 ±1.5 %). com-pared with natural purification 33.9±1.6 % of TSS, 22.7±1.4 % of TN2-N, 29.3±1.6 % of TNH3-N, 53.9±1.2 % of NO2-N, 21.6±1.5 % of TP and 15.4±1.6 % of BOD5 at the same dilution ratio There were significant different (P ≤0.05) between paddle wheel aerator and natural purification in concen-trations reduction. The paddle wheel aerator was found to be relevant in the water quality improve-ment and thus recommend for small and medium scale fish farmers in controlling effluents.


2019 ◽  
Vol 20 (2) ◽  
pp. 538-549
Author(s):  
Maoqing Duan ◽  
Xia Du ◽  
Wenqi Peng ◽  
Cuiling Jiang ◽  
Shijie Zhang

Abstract In northern China, river water originating from or flowing through forests often contains large amounts of oxygen-consuming organic substances, mainly humic substances. These substances are stable and not easily biodegradable, resulting in very high detection values of chemical oxygen demand. However, under natural conditions, the dissolved oxygen demand is not as high. Using experimental values to evaluate river water quality and the impact of human activities on water quality is thus unscientific and does not meet national development goals. In this study, the potential sources of high-concentration chemical oxygen demand in river water in two areas exposed to virtually no anthropogenic activities and strongly affected by humic substances, were analysed. The chemical oxygen demand contributed by humic substances (COD-HSs) was quantified using three methods. The results of water quality monitoring in 2017 and 2018 revealed that the chemical oxygen demand concentrations (5–44 mg/L) predominantly exceeded the standard (15 mg/L). The study results suggest that COD-HSs should be considered separately for objective evaluation and management of water quality, particularly in areas that are seriously affected by COD-HSs, to provide a scientific basis for formulating sustainable water quality management policies.


Sign in / Sign up

Export Citation Format

Share Document