scholarly journals Response of banana germplasms to banana bunchy top virus

2021 ◽  
Vol 948 (1) ◽  
pp. 012022
Author(s):  
D Arubi ◽  
Giyanto ◽  
D Dinarty ◽  
A Sutanto ◽  
S H Hidayat

Abstract Banana bunchy top virus (BBTV) is one of the important viruses causing disease in bananas and its infection has the potential to cause yield loss. This study was conducted to evaluate the response of several commercial cultivars (Cavendish, Bebek, Goroho, Tanduk, and Barangan Merah) and wild accessions (Klutuk NTT, Halabanensis, SPn 001, LNT 001, and Microcarpa) of banana to BBTV infection. Transmission of BBTV was carried out through banana aphid Pentalonia nigronervosa, using 20 adult aphids per plant with an acquisition feeding period of 24 hours on BBTV-infected plants and an inoculation feeding period on healthy test plants for 48 hours. Observation on plant growth and disease intensity was conducted for 8 weeks after inoculation. At the end of the observation period, only 5 cultivars, i.e. Cavendish, Bebek, Goroho, Barangan Merah, and Halabanensis showed typical symptoms of BBTV with disease incidence reached 80%, 60%, 20%, 20%, and 20% respectively. Significant inhibition of plant height and leaves width occurred in Cavendish, Bebek, and Goroho i.e. 44.60%, 36.31%; 12.62%, 41.08%; and 25%, 10.13%, respectively. This paper discusses the need for banana germplasm exploration to find sources of resistance to BBTV.

2005 ◽  
Vol 5 (1) ◽  
pp. 42-49
Author(s):  
Dewi Widyastuti ◽  
Sri Hendrastuti Hidayat

Effects of time of infection of banana bunchy top virus on susceptibility of three banana cultivars. Banana Bunchy Top, caused by Banana Bunchy Top Virus (BBTV), is one of the most important banana diseases in Indonesia. Approach to reduce disease incidence involves prevention of early infection especially on susceptible cultivars. This study was conducted to evaluate the response of three banana cultivars, Ambon Kuning, Tanduk, and Kepok, to different time of infection of BBTV i.e., one week and three week after adaptation period, and one week during adaptation period. Banana plants used in the study were prepared through in vitro propagation (tissue culture) and virus transmission was done using aphid vector, Pentalonia nigronervosa.  In addition to observation on symptom expression, inhibition of plant height, and reduction of leaf size, conformation of virus infection was done through indirect ELISA. Virus concentration on different part of the plant, young leaf, stem, and root, tends to decrease over the time due to the ability of BBTV to move from cell to cell before replication takes place. It is evidenced that BBTV was able to infect banana in all growth stages although the younger plant is more susceptible to BBTV. Although concentration of the virus in the tested plant is considered high, symptoms expression of BBTV infection can be differentiated from moderate to very severe. Response of banana plants to infection of BBTV can be grouped into susceptible (Ambon Kuning), moderate tolerant (Tanduk), and tolerant (Kepok).  


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Reiko Miyahara ◽  
Kensuke Takahashi ◽  
Nguyen Thi Hien Anh ◽  
Vu Dinh Thiem ◽  
Motoi Suzuki ◽  
...  

Abstract Exposure to environmental tobacco smoke (ETS) is an important modifiable risk factor for child hospitalization, although its contribution is not well documented in countries where ETS due to maternal tobacco smoking is negligible. We conducted a birth cohort study of 1999 neonates between May 2009 and May 2010 in Nha Trang, Vietnam, to evaluate paternal tobacco smoking as a risk factor for infectious and non-infectious diseases. Hospitalizations during a 24-month observation period were identified using hospital records. The effect of paternal exposure during pregnancy and infancy on infectious disease incidence was evaluated using Poisson regression models. In total, 35.6% of 1624 children who attended follow-up visits required at least one hospitalization by 2 years of age, and the most common reason for hospitalization was lower respiratory tract infection (LRTI). Paternal tobacco smoking independently increased the risk of LRTI 1.76-fold (95% CI: 1.24–2.51) after adjusting for possible confounders but was not associated with any other cause of hospitalization. The population attributable fraction indicated that effective interventions to prevent paternal smoking in the presence of children would reduce LRTI-related hospitalizations by 14.8% in this epidemiological setting.


Plant Disease ◽  
2008 ◽  
Vol 92 (3) ◽  
pp. 409-414 ◽  
Author(s):  
Mark S. Sisterson ◽  
Jianchi Chen ◽  
Mario A. Viveros ◽  
Edwin L. Civerolo ◽  
Craig Ledbetter ◽  
...  

Almond leaf scorch (ALS) disease has been present in California's almond-growing regions for over 60 years. This disease is caused by the bacterium Xylella fastidiosa and the pathogen is vectored by xylem-feeding sharpshooters and spittlebugs. Currently, there are no effective management techniques that prevent trees from becoming infected. Within affected orchards throughout California's Central Valley, disease incidence and the risk of tree-to-tree spread appears to be low. Consequently, the decision to remove or keep infected trees depends on lost productivity. We compared yield and vitality between infected and uninfected almond for cvs. Sonora and Nonpareil. Sonora was examined at three sites over 3 years and Nonpareil was examined at one site over 2 years. Yields of ALS-affected trees were significantly lower for both cultivars, although yield losses of Sonora were proportionally greater than those of Nonpareil. Yields of infected trees did not decline incrementally over years; rather, they fluctuated similarly to those of uninfected trees. In addition, no infected trees died during the course of the study. These results are in direct contrast to previous anecdotal reports which suggest that yields of infected trees incrementally decline and infected trees eventually die. A simple economic model was developed to determine conditions under which rouging infected trees would increase returns. Based on the model, orchard age, yield loss due to infection, and the value of a maximally producing almond tree should be considered when deciding to remove ALS-affected trees.


2021 ◽  
Vol 47 (8-9) ◽  
pp. 755-767
Author(s):  
Ignace Safari Murhububa ◽  
Kévin Tougeron ◽  
Claude Bragard ◽  
Marie-Laure Fauconnier ◽  
Espoir Bisimwa Basengere ◽  
...  

2015 ◽  
Vol 16 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Genna M. Gaunce ◽  
William W. Bockus

Barley yellow dwarf (BYD) is one of the most important wheat diseases in the state of Kansas. Despite the development of cultivars with improved resistance to BYD, little is known about the impact that this resistance has on yield loss from the disease. The intent of this research was to estimate yield loss in winter wheat cultivars in Kansas due to BYD and quantify the reduction in losses associated with resistant cultivars. During seven years, BYD incidence was visually assessed on numerous winter wheat cultivars in replicated field nurseries. When grain yields were regressed against BYD incidence scores, negative linear relationships significantly fit the data for each year and for the combined dataset covering all seven years. The models showed that, depending upon the year, 19–48% (average 33%) of the relative yields was explained by BYD incidence. For the combined dataset, 29% of the relative yield was explained by BYD incidence. The models indicated that cultivars showing the highest disease incidence that year had 25–86% (average 49%) lower yield than a hypothetical cultivar that showed zero incidence. Using the models, the moderate level of resistance in the cultivar Everest was calculated to reduce yield loss from BYD by about 73%. Therefore, utilizing visual BYD symptom evaluations in Kansas coupled with grain yields is useful to estimate yield loss from the disease. Accepted for publication 1 December 2014. Published 9 January 2015.


2000 ◽  
Vol 90 (8) ◽  
pp. 788-800 ◽  
Author(s):  
L. V. Madden ◽  
G. Hughes ◽  
M. E. Irwin

A general approach was developed to predict the yield loss of crops in relation to infection by systemic diseases. The approach was based on two premises: (i) disease incidence in a population of plants over time can be described by a nonlinear disease progress model, such as the logistic or monomolecular; and (ii) yield of a plant is a function of time of infection (t) that can be represented by the (negative) exponential or similar model (ζ(t)). Yield loss of a population of plants on a proportional scale (L) can be written as the product of the proportion of the plant population newly infected during a very short time interval (X′(t)dt) and ζ(t), integrated over the time duration of the epidemic. L in the model can be expressed in relation to directly interpretable parameters: maximum per-plant yield loss (α, typically occurring at t = 0); the decline in per-plant loss as time of infection is delayed (γ; units of time-1); and the parameters that characterize disease progress over time, namely, initial disease incidence (X0), rate of disease increase (r; units of time-1), and maximum (or asymptotic) value of disease incidence (K). Based on the model formulation, L ranges from αX0 to αK and increases with increasing X0, r, K, α, and γ-1. The exact effects of these parameters on L were determined with numerical solutions of the model. The model was expanded to predict L when there was spatial heterogeneity in disease incidence among sites within a field and when maximum per-plant yield loss occurred at a time other than the beginning of the epidemic (t > 0). However, the latter two situations had a major impact on L only at high values of r. The modeling approach was demonstrated by analyzing data on soybean yield loss in relation to infection by Soybean mosaic virus, a member of the genus Potyvirus. Based on model solutions, strategies to reduce or minimize yield losses from a given disease can be evaluated.


2003 ◽  
Vol 9 (3-4) ◽  
Author(s):  
I. J. Holb

In a two-year study, yield loss and temporal dynamics of brown rot development caused by Monilinia fructigena (Aderh. & Ruhl.) Honey were quantified and analysed in two organic apple orchards (Debrecen—Pallag and Debrecen—Józsa). The first infected fruits were observed at the beginning of August in both years and both locations, except for one occasion when the first infected fruit was found at the end of July. Temporal disease development was continuous up to harvest time in both years and locations. In the two years, pre-harvest yield loss on the trees amounted between 8.9% and 9.3% at Debrecen-Pallag and between 9.7% and 10.8% at Debrecen—Jozsa by fruit harvest. Incidence of infected fruits on the orchard floor ranged from 32.4% to 43.2% and from 53.3% to 61.9%, at Debrecen—Pallag and Debrecen—Józsa, respectively, by fruit harvest. Analyses of temporal disease progress showed that the best-fitted mathematical function was the power function in both orchards and years. Both parameters of the power function clearly demonstrated that incidence of brown rot on fruit increased faster on the orchard floor than on the tree. Moreover, the disease increase was faster at Debrecen—Józsa in most cases than at Debrecen—Pallag. Our results indicated that the strategy of disease management, the ripeness of the fruit and the presence of a wounding agent played an important role in the yield loss and in the temporal development of fruit disease incidence caused by M. fructigena in organic apple orchards. Biological and practical implications of the results are discussed.


2021 ◽  
Vol 38 (1) ◽  
pp. 20-37
Author(s):  
Yohana Patricia Anama ◽  
Ricardo Díaz ◽  
David Esteban Duarte-Alvarado ◽  
Tulio Cesar Lagos-Burbano

Fusarium oxysporum is one of the most limiting fungal pathogens of lulo crop. To determine its pathogenicity, this work morphologically and pathogenically characterized F. oxysporum isolates from different lulo-growing municipalities of the Department of Nariño. Twenty isolates were evaluated through a completely randomized design with two factors and three replicates per treatment, including a control. The first factor corresponded to 20 isolates of F. oxysporum and the second to 10 lulo genotypes. The morphological characterization involved determining growth rate (GR), color (CO), mycelial type (MT), medium coloration (Mc), shape (Sh), size (S), number (N) of macroconidial (Ma) and microconidial (Mi) septa, presence of chlamydospores (PC), and chlamydospore shape (CS). Moreover, the pathogenic characterization was based on the incubation period (IP), absolute growth rate (AGR), disease severity (DS), disease incidence (I), and vascular discoloration (VD). The morphological characterization demonstrated that all isolates corresponded to F. oxysporum. For IP, genotype G1 showed the lowest average at 18 days. For AGR, genotype G2 had the lowest height increase at 0.05 cm.day-1. For DS, genotype G1 reached the highest severity level (level 9) and a disease incidence of 100%. This study provides the first report of the special form of F. oxysporum f. sp. quitoense in Nariño. Solanum hirtum, Solanum sessiliflorum, and Solanum estramonifolium were resistant to the isolates evaluated, demonstrating that wild species should be considered as sources of resistance for breeding programs aiming to obtain resistant commercial genotypes.


2012 ◽  
Vol 7 (2) ◽  
pp. 130-139
Author(s):  
Muhammad Taufik ◽  
Sri Hendrastuti Hidayat ◽  
Sriani Sujiprihati ◽  
Gede Suastika ◽  
Sientje Mandang Sumaraw

Resistance Evaluation of Chillipepper Cultivars for Cucumber Mosaic Virus and Chilli Veinal Mottle Virus.  The use of resistance culivars is an important strategy for management of virus infection in chillipepper. A research was undergone to study the effect of single and mix infection of CMV and ChiVMV on the disease incidence and on the growth and yield of nine chillipepper cultivars, i.e. Cilibangi 4, Cilibangi 5, Cilibangi 6, Helem, Jatilaba, Tit Bulat, Tit Segitiga, Tit Super and Tampar. Mechanical inoculation was conducted to transmit the virus. Infection of the virus was then confirmed with DAS-ELISA.  In general, inoculated chillipepper cultivars developed similar symptoms, i.e. mosaic type for CMV and mottle type for ChiVMV.  More severe symptom was not always observed from mix infection of CMV and ChiVMV. Disease incidence occurred in the range of 16.67 – 86.0% and this caused 18.3 – 98.6% yield loss.  Based on symptom expression, ELISA result, and reduction on yield, it can be concluded that all chillipepper cultivars used in this study could not hold up the virus infection. However, several cultivars showed tolerance response :  Jatilaba, Tit Super, and Tampar for CMV; Cilibangi 4 for ChiVMV; Tit Super for mix infection; and Cilibangi 5 for CMV, ChiVMV, and mix infection.  Further evaluation and investigation involving different chillipepper cultivars should be conducted.


Plant Disease ◽  
2020 ◽  
Vol 104 (12) ◽  
pp. 3131-3134
Author(s):  
Qiaoyun Li ◽  
Mengyu Li ◽  
Yumei Jiang ◽  
Siyu Wang ◽  
Kaige Xu ◽  
...  

The most effective and environmentally sustainable method for controlling black point disease of wheat (Triticum aestivum L.) is to plant resistant cultivars. To identify sources of resistance to black point, 165 selected cultivars/lines were inoculated with isolates of six fungal species (Bipolaris sorokiniana, Alternaria alternata, Fusarium equiseti, Exserohilum rostratum, Epicoccum sorghinum, and Curvularia spicifera) known to cause black point in wheat using spore suspensions under controlled field conditions in 2016 and 2017. Inoculation of the isolates significantly increased the incidence of black point in the cultivars/lines compared with those grown under natural field conditions (NFC). The disease incidence of plants inoculated with B. sorokiniana and E. rostratum was 15.5% and 18.8% in 2016, and 20.4% and 23.0% in 2017, whereas those under NFC were 5.7% (2016) and 1.5% (2017), respectively. Furthermore, disease symptoms varied with pathogen. Among the 165 cultivars/lines tested, 3.6%, 50.9%, 60.0%, 1.8%, 47.3%, and 58.8% were resistant to B. sorokiniana, A. alternata, F. equiseti, E. rostratum, E. sorghinum, and C. spicifera, respectively. In addition, we identified one line (‘SN530070’) resistant to black point caused by all six pathogens. This is the first study to assess resistance to wheat black point caused by six fungal species under controlled conditions. The black point-resistant cultivars/lines could be useful in breeding and also in research on the mechanisms of resistance to black point.


Sign in / Sign up

Export Citation Format

Share Document