scholarly journals PENGARUH WAKTU INFEKSI VIRUS KERDIL PISANG TERHADAP KERENTANAN TIGA KULTIVAR

2005 ◽  
Vol 5 (1) ◽  
pp. 42-49
Author(s):  
Dewi Widyastuti ◽  
Sri Hendrastuti Hidayat

Effects of time of infection of banana bunchy top virus on susceptibility of three banana cultivars. Banana Bunchy Top, caused by Banana Bunchy Top Virus (BBTV), is one of the most important banana diseases in Indonesia. Approach to reduce disease incidence involves prevention of early infection especially on susceptible cultivars. This study was conducted to evaluate the response of three banana cultivars, Ambon Kuning, Tanduk, and Kepok, to different time of infection of BBTV i.e., one week and three week after adaptation period, and one week during adaptation period. Banana plants used in the study were prepared through in vitro propagation (tissue culture) and virus transmission was done using aphid vector, Pentalonia nigronervosa.  In addition to observation on symptom expression, inhibition of plant height, and reduction of leaf size, conformation of virus infection was done through indirect ELISA. Virus concentration on different part of the plant, young leaf, stem, and root, tends to decrease over the time due to the ability of BBTV to move from cell to cell before replication takes place. It is evidenced that BBTV was able to infect banana in all growth stages although the younger plant is more susceptible to BBTV. Although concentration of the virus in the tested plant is considered high, symptoms expression of BBTV infection can be differentiated from moderate to very severe. Response of banana plants to infection of BBTV can be grouped into susceptible (Ambon Kuning), moderate tolerant (Tanduk), and tolerant (Kepok).  

2021 ◽  
Vol 948 (1) ◽  
pp. 012022
Author(s):  
D Arubi ◽  
Giyanto ◽  
D Dinarty ◽  
A Sutanto ◽  
S H Hidayat

Abstract Banana bunchy top virus (BBTV) is one of the important viruses causing disease in bananas and its infection has the potential to cause yield loss. This study was conducted to evaluate the response of several commercial cultivars (Cavendish, Bebek, Goroho, Tanduk, and Barangan Merah) and wild accessions (Klutuk NTT, Halabanensis, SPn 001, LNT 001, and Microcarpa) of banana to BBTV infection. Transmission of BBTV was carried out through banana aphid Pentalonia nigronervosa, using 20 adult aphids per plant with an acquisition feeding period of 24 hours on BBTV-infected plants and an inoculation feeding period on healthy test plants for 48 hours. Observation on plant growth and disease intensity was conducted for 8 weeks after inoculation. At the end of the observation period, only 5 cultivars, i.e. Cavendish, Bebek, Goroho, Barangan Merah, and Halabanensis showed typical symptoms of BBTV with disease incidence reached 80%, 60%, 20%, 20%, and 20% respectively. Significant inhibition of plant height and leaves width occurred in Cavendish, Bebek, and Goroho i.e. 44.60%, 36.31%; 12.62%, 41.08%; and 25%, 10.13%, respectively. This paper discusses the need for banana germplasm exploration to find sources of resistance to BBTV.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 613
Author(s):  
Temitope Jekayinoluwa ◽  
Jaindra Nath Tripathi ◽  
Benjamin Dugdale ◽  
George Obiero ◽  
Edward Muge ◽  
...  

The banana aphid, Pentalonia nigronervosa, is the sole insect vector of banana bunchy top virus (BBTV), the causal agent of banana bunchy top disease. The aphid acquires and transmits BBTV while feeding on infected banana plants. RNA interference (RNAi) enables the generation of pest and disease-resistant crops; however, its effectiveness relies on the identification of pivotal gene sequences to target and silence. Acetylcholinesterase (AChE) is an essential enzyme responsible for the hydrolytic metabolism of the neurotransmitter acetylcholine in animals. In this study, the AChE gene of the banana aphid was targeted for silencing by RNAi through transgenic expression of AChE dsRNA in banana and plantain plants. The efficacy of dsRNA was first assessed using an artificial feeding assay. In vitro aphid feeding on a diet containing 7.5% sucrose, and sulfate complexes of trace metals supported aphid growth and reproduction. When AChE dsRNA was included in the diet, a dose of 500 ng/μL was lethal to the aphids. Transgenic banana cv. Cavendish Williams and plantain cvs. Gonja Manjaya and Orishele expressing AChE dsRNA were regenerated and assessed for transgene integration and copy number. When aphids were maintained on elite transgenic events, there was a 67.8%, 46.7%, and 75.6% reduction in aphid populations growing on Cavendish Williams, Gonja Manjaya, and Orishele cultivars, respectively, compared to those raised on nontransgenic control plants. These results suggest that RNAi targeting an essential aphid gene could be a useful means of reducing both aphid infestation and potentially the spread of the disease they transmit.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 751
Author(s):  
Marwa Reda Bakkar ◽  
Ahmed Hassan Ibrahim Faraag ◽  
Elham R. S. Soliman ◽  
Manar S. Fouda ◽  
Amir Mahfouz Mokhtar Sarguos ◽  
...  

COVID-19 is a pandemic disease caused by the SARS-CoV-2, which continues to cause global health and economic problems since emerging in China in late 2019. Until now, there are no standard antiviral treatments. Thus, several strategies were adopted to minimize virus transmission, such as social distancing, face covering protection and hand hygiene. Rhamnolipids are glycolipids produced formally by Pseudomonas aeruginosa and as biosurfactants, they were shown to have broad antimicrobial activity. In this study, we investigated the antimicrobial activity of rhamnolipids against selected multidrug resistant bacteria and SARS-CoV-2. Rhamnolipids were produced by growing Pseudomonas aeruginosa strain LeS3 in a new medium formulated from chicken carcass soup. The isolated rhamnolipids were characterized for their molecular composition, formulated into nano-micelles, and the antibacterial activity of the nano-micelles was demonstrated in vitro against both Gram-negative and Gram-positive drug resistant bacteria. In silico studies docking rhamnolipids to structural and non-structural proteins of SARS-CoV-2 was also performed. We demonstrated the efficient and specific interaction of rhamnolipids with the active sites of these proteins. Additionally, the computational studies suggested that rhamnolipids have membrane permeability activity. Thus, the obtained results indicate that SARS-CoV-2 could be another target of rhamnolipids and could find utility in the fight against COVID-19, a future perspective to be considered.


2021 ◽  
Vol 9 (2) ◽  
pp. 379
Author(s):  
Breanne M. Head ◽  
Christopher I. Graham ◽  
Teassa MacMartin ◽  
Yoav Keynan ◽  
Ann Karen C. Brassinga

Legionnaires’ disease incidence is on the rise, with the majority of cases attributed to the intracellular pathogen, Legionella pneumophila. Nominally a parasite of protozoa, L. pneumophila can also infect alveolar macrophages when bacteria-laden aerosols enter the lungs of immunocompromised individuals. L. pneumophila pathogenesis has been well characterized; however, little is known about the >25 different Legionella spp. that can cause disease in humans. Here, we report for the first time a study demonstrating the intracellular infection of an L. bozemanae clinical isolate using approaches previously established for L. pneumophila investigations. Specifically, we report on the modification and use of a green fluorescent protein (GFP)-expressing plasmid as a tool to monitor the L. bozemanae presence in the Acanthamoeba castellanii protozoan infection model. As comparative controls, L. pneumophila strains were also transformed with the GFP-expressing plasmid. In vitro and in vivo growth kinetics of the Legionella parental and GFP-expressing strains were conducted followed by confocal microscopy. Results suggest that the metabolic burden imposed by GFP expression did not impact cell viability, as growth kinetics were similar between the GFP-expressing Legionella spp. and their parental strains. This study demonstrates that the use of a GFP-expressing plasmid can serve as a viable approach for investigating Legionella non-pneumophila spp. in real time.


Author(s):  
Bernadien M. Nijmeijer ◽  
Marta Bermejo-Jambrina ◽  
Tanja M. Kaptein ◽  
Carla M. S. Ribeiro ◽  
Doris Wilflingseder ◽  
...  

AbstractSemen is important in determining HIV-1 susceptibility but it is unclear how it affects virus transmission during sexual contact. Mucosal Langerhans cells (LCs) are the first immune cells to encounter HIV-1 during sexual contact and have a barrier function as LCs are restrictive to HIV-1. As semen from people living with HIV-1 contains complement-opsonized HIV-1, we investigated the effect of complement on HIV-1 dissemination by human LCs in vitro and ex vivo. Notably, pre-treatment of HIV-1 with semen enhanced LC infection compared to untreated HIV-1 in the ex vivo explant model. Infection of LCs and transmission to target cells by opsonized HIV-1 was efficiently inhibited by blocking complement receptors CR3 and CR4. Complement opsonization of HIV-1 enhanced uptake, fusion, and integration by LCs leading to an increased transmission of HIV-1 to target cells. However, in the absence of both CR3 and CR4, C-type lectin receptor langerin was able to restrict infection of complement-opsonized HIV-1. These data suggest that complement enhances HIV-1 infection of LCs by binding CR3 and CR4, thereby bypassing langerin and changing the restrictive nature of LCs into virus-disseminating cells. Targeting complement factors might be effective in preventing HIV-1 transmission.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Kamel Kamal Sabet ◽  
Magdy Mohamed Saber ◽  
Mohamed Adel-Aziz El-Naggar ◽  
Nehal Samy El-Mougy ◽  
Hatem Mohamed El-Deeb ◽  
...  

Five commercial composts were evaluated to suppress the root-rot pathogens (Fusarium solani (Mart.) App. and Wr, Pythium ultimum Trow, Rhizoctonia solani Kuhn, and Sclerotium rolfsii Sacc.) of cucumber plants under in vitro and greenhouse conditions. In vitro tests showed that all tested unautoclaved and unfiltrated composts water extracts (CWEs) had inhibitor effect against pathogenic fungi, compared to autoclaved and filtrated ones. Also, the inhibitor effects of 40 bacteria and 15 fungi isolated from composts were tested against the mycelial growth of cucumber root-rot pathogens. Twenty two bacteria and twelve fungal isolates had antagonistic effect against root-rot pathogens. The antagonistic fungal isolates were identified as 6 isolates belong to the genus Aspergillus spp., 5 isolates belong to the genus Penicillium spp. and one isolate belong to the genus Chaetomium spp. Under greenhouse conditions, the obtained results in pot experiment using artificial infested soil with cucumber root-rot pathogens showed that the compost amended soil reduced the percentage of disease incidence, pathogenic fungi population, and improved the cucumber vegetative parameters as shoot length, root length, fresh weight, and dry weight. These results suggested that composts are consequently considered as control measure against cucumber root-rot pathogens.


2021 ◽  
Vol 47 (8-9) ◽  
pp. 755-767
Author(s):  
Ignace Safari Murhububa ◽  
Kévin Tougeron ◽  
Claude Bragard ◽  
Marie-Laure Fauconnier ◽  
Espoir Bisimwa Basengere ◽  
...  

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 363-363
Author(s):  
Dylan B Davis ◽  
Zachary Seekford ◽  
Mackenzie Dickson ◽  
Lucas Gonçalves ◽  
Samir Burato ◽  
...  

Abstract The objective of this study was to evaluate the effect of paternal high energy diets on blastocyst development during in vitro embryo production (IVP). Eight sires were stratified by body weight (initial BW = 946 ± 85 kg) and randomly assigned to the same diet (NEm = 2.10, NEg = 1.44, CP = 14.1%, NDF = 16.6%, DM basis) fed at two different inclusion rates while having ad libitum access to bermudagrass hay (NEm = 1.02, NEg = 0.45, CP = 10.2%, NDF = 71.6). After a 10-d adaptation period, sires were individually fed to receive 0.5% (MAINT) or 1.25% [High gain (HG)] of their BW daily for 67 days. At the end of the feeding period, semen was collected through electroejaculation and frozen. Antral follicles were aspirated from ovaries obtained from a slaughterhouse and utilized for IVP in 4 independent replicates (n = 2,227 total oocytes). Cleavage rates were evaluated 48 h after fertilization and blastocyst development rates were evaluated after 7 days of embryo culture. The proposed treatments successfully induced differences in BW gain (P < 0.01; 2.28 vs -0.04 kg/d) and carcass composition (Rump fat: 1.63 vs. 0.41 cm, P = 0.08; Rib fat: 1.06 vs. 0.41 cm, P = 0.02; intramuscular fat: 3.5 vs. 3.0%, P = 0.36; for HG vs. MAINT sires, respectively). There was a significant decrease in cleavage rates (69.9 ± 2.5 vs. 65.0 ± 2.7; P < 0.04), blastocyst rate as a percentage of oocytes (16.7 ± 2.9 vs. 11.5 ± 2.1; P < 0.01), and blastocyst rates as a percentage of cleaved structures (24.1 ± 3.8 vs. 11.5 ± 2.1; P < 0.01) for HG compared with MAINT sires. In conclusion, sires fed diets that induce highly anabolic conditions had impaired blastocyst development compared to sires fed a maintenance diet.


2000 ◽  
Vol 90 (8) ◽  
pp. 788-800 ◽  
Author(s):  
L. V. Madden ◽  
G. Hughes ◽  
M. E. Irwin

A general approach was developed to predict the yield loss of crops in relation to infection by systemic diseases. The approach was based on two premises: (i) disease incidence in a population of plants over time can be described by a nonlinear disease progress model, such as the logistic or monomolecular; and (ii) yield of a plant is a function of time of infection (t) that can be represented by the (negative) exponential or similar model (ζ(t)). Yield loss of a population of plants on a proportional scale (L) can be written as the product of the proportion of the plant population newly infected during a very short time interval (X′(t)dt) and ζ(t), integrated over the time duration of the epidemic. L in the model can be expressed in relation to directly interpretable parameters: maximum per-plant yield loss (α, typically occurring at t = 0); the decline in per-plant loss as time of infection is delayed (γ; units of time-1); and the parameters that characterize disease progress over time, namely, initial disease incidence (X0), rate of disease increase (r; units of time-1), and maximum (or asymptotic) value of disease incidence (K). Based on the model formulation, L ranges from αX0 to αK and increases with increasing X0, r, K, α, and γ-1. The exact effects of these parameters on L were determined with numerical solutions of the model. The model was expanded to predict L when there was spatial heterogeneity in disease incidence among sites within a field and when maximum per-plant yield loss occurred at a time other than the beginning of the epidemic (t > 0). However, the latter two situations had a major impact on L only at high values of r. The modeling approach was demonstrated by analyzing data on soybean yield loss in relation to infection by Soybean mosaic virus, a member of the genus Potyvirus. Based on model solutions, strategies to reduce or minimize yield losses from a given disease can be evaluated.


Sign in / Sign up

Export Citation Format

Share Document