scholarly journals Chitin Fiber from Mushroom as Reinforcement for Biobased Polymer

2021 ◽  
Vol 1192 (1) ◽  
pp. 012016
Author(s):  
M I M Zin ◽  
N S Shamsudin ◽  
F Ali ◽  
W M F W Nawawi

Abstract This project aimed to study the reinforcement effect of fungal chitin at different loading on chitin/PLA composite. The chitin nanofibers were extracted from three mushroom species (oyster mushroom Pleurotus ostreatus, shiitake mushroom Lentinula edodes, enoki mushroom Flammulina velutipes) and used as a reinforcement element in PLA. The chitin/PLA composite was fabricated using a solvent-casting method followed by the hot-compress molding method. In the solvent-casting method, the chitin nanofibers were dispersed in PLA/chloroform mixture and the mixture was left for solvent evaporation. The solvent-free chitin/PLA thin film was then filled in dog bone mold before proceeded with hot-compress molding at 190°C and 70 bar. The samples with different chitin loading were tested with tensile test to study the mechanical performance of nanocomposite. The chitin/PLA composite from oyster mushroom shows the optimum result (σ= 43 MPa, E= 12 MPa) at 5% chitin loading. The increment of the chitin loading leads to a decrease in both strength and strain. However, for the samples from enoki and shitake mushrooms, the optimum chitin loading is 10% with 55 MPa and 56 MPa tensile strength, respectively. This study suggests the potential of fungal chitin as reinforcement in PLA.

2019 ◽  
Vol 821 ◽  
pp. 89-95
Author(s):  
Wanasorn Somphol ◽  
Thipjak Na Lampang ◽  
Paweena Prapainainar ◽  
Pongdhorn Sae-Oui ◽  
Surapich Loykulnant ◽  
...  

Poly (lactic acid) or PLA was reinforced by nanocellulose and polyethylene glycol (PEG), which were introduced into PLA matrix from 0 to 3 wt.% to enhance compatibility and strength of the PLA. The nanocellulose was prepared by TEMPO-mediated oxidation from microcrystalline cellulose (MCC) powder and characterized by TEM, AFM, and XRD to reveal rod-like shaped nanocellulose with nanosized dimensions, high aspect ratio and high crystallinity. Films of nanocellulose/PEG/PLA nanocomposites were prepared by solvent casting method to evaluate the mechanical performance. It was found that the addition of PEG in nanocellulose-containing PLA films resulted in an increase in tensile modulus with only 1 wt% of PEG, where higher PEG concentrations negatively impacted the tensile strength. Furthermore, the tensile strength and modulus of nanocellulose/PEG/PLA nanocomposites were higher than the PLA/PEG composites due to the existence of nanocellulose chains. Visual traces of crazing were detailed to describe the deformation mechanism.


Author(s):  
Mustafa Kemal Soylu ◽  
Mingu Kang

Mushroom cultivation in South Korea is increasing fast last decades. Mushroom cultivation of South Korea is 173577 tones and South Korea gains 800 million dollars income annually. Different kind of mushroom species are cultivated and 31% enoki mushroom (Flammulina velutipes), 26% king oyster (Pleurotus eryngii), 26% oyster mushroom (Pleurotus ostreatus), 13% white buton mushroom (Agaricus bisporus) and 4% rest of the total mushroom Lentinula edodes, Ganoderma lucidum, Phellinus vb. are produced in Korea. 764 ha mushroom growing area was used for mushroom cultivation. 31% of total growing area is oyster mushroom (Pleurotus ostreatus) and 14% king oyster (Pleurotus eryngii), 6% winter mushroom (Flummulina velutipes), 16% white button mushroom (Agaricus bisporus), 3% Phellinus, 3% reishii (Ganoderma lucidum) and 27% other mushrooms. Mushroom is consumed frequently in Korea and mushroom consumption per person is 4.2 kg. Growing on log culture (oak mushroom, reishi and Phellinus), growing on shelves (Agaricus bisporus and Pleurotus ostreatus) and bottle culture (Flummulina velutipes, Pleurotus ostreatus, Pleurotus eryngii) are commonly used growing systems.


2018 ◽  
Vol 28 (2) ◽  
pp. 429-432
Author(s):  
Dilyana Zvezdova

Chitosan, a hydrophilic biopolymer industrially obtained by N-deacetylation of chitin, can be applied as an antimicrobial agent. It highlights the applications of chitosan as an antimicrobial agent against fungi, bacteria, and viruses and as an elicitor of plant defense mechanisms. A series of novel chitosan-sulfathiazole nanocomposite (CSFZ) films were prepared by using solvent casting method for wound healing application. Fourier transform infrared spectroscopy (FTIR) was employed to ascertain the interaction between negatively charged sulfathiazole and positively charged chitosan. Moreover, the antibacterial activity of the films was investigated against gram positive and gram negative microorganisms. It was found that all CSFZ films showed good inhibitory activity against all the tested bacteria as compared to control. The above analysis suggested that the CSFZ films could be used as potential candidates for wound healing application.


Author(s):  
K. Pallavi ◽  
T. Pallavi

Objective: The main aim of the present research was to develop an oral fast dissolving polymeric film (FDF) with good mechanical properties, faster disintegration and dissolution when placed on the tongue.Methods: Eletriptan hydrobromide is prescribed for the treatment of mild to a moderate migraine. The polymers selected for preparing films were Pullulan, Maltodextrin (MDX), Acacia, Sodium alginate (SA), Locust bean gum (LBG), Guar gum (GG), Xanthan gum (XG), Polyvinyl alcohol (PVA), Polyvinyl pyrrolidine (PVP), Hydroxyl propyl methyl cellulose (HPMC) E5, and HPMC E15. Twelve sets of films FN1–FN12 were prepared by solvent casting method with Pullulan and combination of Acacia, MDX, SA, LBG, GG, XG, PVA, PVP, HPMC E5 and HPMC E15. Five sets of films FS1–FS5 were prepared using synthetic polymers like PVA, PVP, HPMC E5 and HPMC E15.Results: From all the prepared polymer formulations, FN2, FN8, and FS3 were selected based on disintegration time, and drug release and amongst this three FN2 was optimised based on its disintegration time (D. T). The percent drug release of the optimised film was compared with the percent release of the pure drug.Conclusion: The optimised formulation had a D. T of 16 s and a percent drug release of 97.5% in 10 min in pH 6.8 phosphate buffer and 100.6% drug release in 10 min in 0.1N HCl.


2012 ◽  
Vol 430-432 ◽  
pp. 20-23 ◽  
Author(s):  
Hou Yong Yu ◽  
Zong Yi Qin

The biodegradable nanocomposites of poly (3–hydroxybutyrate–co–3–hydroxyvalerate) (PHBV) with different cellulose nanocrystals (CNCs) contents were prepared by a solvent casting method. The effects of CNCs on the crystallization behavior of PHBV were studied by DSC. The DSC results showed that compared to PHBV, the melt crystallization temperature increased to 92.3 °C for the nanocomposites with 10 wt. % CNCs, which indicated that the crystallization of PHBV became easier with the addition of CNCs. Moreover, the non–isothermal crystallization kinetics study illustrated that overall crystallization rate of PHBV in the nanocomposites was faster than that of neat PHBV, which should be attributed to the strong heterogeneous nucleation of CNCs.


2018 ◽  
Vol 89 (6) ◽  
pp. 975-988 ◽  
Author(s):  
Vera Vivod ◽  
Branko Neral ◽  
Aleš Mihelič ◽  
Vanja Kokol

Cellulose nanofibrils (CNFs) were surface functionalized with hexamethylenediamine (HMDA) and, further, integrated with native CNFs in various weight mass ratios to fabricate water-stable films by the solvent casting method, to be used for the removal of tri-chromatic and anionic black reactive dye with the highest bleeding effect in the very first minutes of textile laundering, and in a weight mass compared to a commercial color-catcher sheet (Delta Pronatura (DP)). The effects of CNF-HMDA content on film bath absorption, surface potential and contact angle properties, as well as dye removal kinetics from different laundering baths (A – without and B – with a detergent) in up to 140 min were studied at 20℃ versus 60℃ and using different dye concentrations (0.1–1 g/L). It was found that bath absorption is decreased significantly (up to 60%) by increasing the CNF-HMDA content in the films, as compared to using a DP color-catcher sheet, due to a morphologically denser structure with surface-positioned hydrophobic ethylene moieties of HMDA, as well as reducing electrostatic attraction groups of CNF and HMDA. Such a surface interacts kinetically faster with anionic and hydrophobic dye molecules already at 20℃, reaching up to 37–80% removal of all dye colorants in the first 20 min. In contrast, the dye removal efficacy of the DP color-catcher sheet is due to it interacting with a cationic polymer being released from the surface, which is better only for a bluish color, and at 60℃, while being between 30% and 48%, as its release is hindered and reduced by the deposition of surfactants from the detergent.


2018 ◽  
Vol 6 (6) ◽  
pp. 918-929 ◽  
Author(s):  
Yao Huang ◽  
Yixiang Wang ◽  
Lingyun Chen ◽  
Lina Zhang

Reconstituted collagen fibers with excellent mechanical performance were successfully fabricated with sodium alginate as coagulate and chitin nanofibers as reinforcing filler and applied as a fibroblast alignment templated scaffold.


Proceedings ◽  
2019 ◽  
Vol 26 (1) ◽  
pp. 18
Author(s):  
Bouamer ◽  
Benrekaa ◽  
Younes

In this study, granulated polylactic acid and ZnO, SiO2 and Al2O3 powders were mixed to form PLA/ZnO and PLA/ZnO SiO2 Al2O3 composites with different concentrations using a solvent casting method. [...]


2013 ◽  
Vol 747 ◽  
pp. 649-652 ◽  
Author(s):  
Chan Ming Yeng ◽  
Husseinsyah Salmah ◽  
Sung Ting Sam

Recently, there has been renews interest in chitosan as materials in producing of biocomposite films. The chitosan (CS)/corn cob (CC) biocomposite films were prepared by solvent casting method. The effect of CC content on tensile properties of CS/CC biocomposite films was studied. The tensile strength and elongation at break of CS/CC biocomposite films decreased as increasing of CC content. However, the increasing of CC content was increased the tensile modulus of CS/CC biocomposite films. Scanning electron microscopy (SEM) was indicated that the deceasing of tensile properties was due to the poor interfacial adhesion between CC filler and CS matrix.


Sign in / Sign up

Export Citation Format

Share Document