scholarly journals High-temperature Friction and Wear Resistance of Ni-Co-SiC Composite Coatings

Author(s):  
Fang Guo ◽  
Wan-chang Sun ◽  
Zong-wei Jia ◽  
Xiao-jia Liu ◽  
Ya-ru Dong
2011 ◽  
Vol 80-81 ◽  
pp. 60-63
Author(s):  
Xue Qing Yue ◽  
Hua Wang ◽  
Shu Ying Wang

Incorporation of metallic elements, titanium and copper, into carbonaceous mesophase (CM) was performed through mechanical alloying in a ball mill apparatus. The structures of the raw CM as well as the Ti/Cu-added CM were characterized by X-ray diffraction. The tribological behavior of the Ti/Cu-added CM used as lubricating additives was investigated by using a high temperature friction and wear tester. The results show that, compared with the raw CM, the Ti/Cu-added CM exhibits a drop in the crystallinity and a transition to the amorphous. The Ti/Cu-added CM used as lubricating additive displays an obvious high temperature anti-friction and wear resistance effect, and the lager the applied load, the lower the friction coefficient and the wear severity.


Author(s):  
Jianliang Li ◽  
Dangsheng Xiong ◽  
Yongkun Qin ◽  
Rajnesh Tyagi

This chapter illustrates the effect of the addition of solid lubricants on the high temperature friction and wear behavior of Ni-based composites. Ni-based composites containing solid lubricant particles both in nano and micrometer range have been fabricated through powder metallurgy route. In order to explore the possible synergetic action of a combination of low and high temperature solid lubricant, nano or micro powders of two or more solid lubricants were added in the composites. This chapter introduces the fabrication of the Ni-based self-lubricating composites containing graphite and/or MoS2, Ag and/or rare earth, Ag and/or hBN as solid lubricants and their friction and wear behavior at room and elevated temperatures. The chapter also includes information on some lubricating composite coatings such as electro-deposited nickel-base coating containing graphite, MoS2, or BN and graphene and their tribological characteristics.


Wear ◽  
2011 ◽  
Vol 270 (7-8) ◽  
pp. 492-498 ◽  
Author(s):  
Chun Guo ◽  
Jiansong Zhou ◽  
Jianmin Chen ◽  
Jierong Zhao ◽  
Youjun Yu ◽  
...  

2010 ◽  
Vol 150-151 ◽  
pp. 881-884
Author(s):  
Chao Ping Jiang ◽  
Jian Zhong Pei ◽  
Jian Min Hao

The Fe-based amorphous coatings were prepared by Air plasma thermal spraying. X-ray diffraction results show that the coating fabricated at current of 300A has an amorphous structure. The amorphous nanocrystalline composite coatings were obtained at current more than 300A. The friction and wear properties of the coatings were investigated in Ml-10 friction and wear tester at dry friction condition. The results show that the amorphous content is the main influencing factors to wear resistance of coating. The density of coating is another reason to affect the wear resistance of amorphous nanocrystalline composite coating.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1688
Author(s):  
Jin Sha ◽  
Liang-Yu Chen ◽  
Yi-Tong Liu ◽  
Zeng-Jian Yao ◽  
Sheng Lu ◽  
...  

The remelting method is introduced to improve the properties of the as-sprayed NiCrBSi coatings. In this work, tungsten carbide (WC) was selected as reinforcement and the as-sprayed and remelted NiCrBSi/WC composite coatings were investigated by X-ray diffraction, scanning electron microscopy, hardness test and tribology test. After spraying, WC particles are evenly distributed in the coating. The remelting process induced the decarburizing reaction of WC, resulting in the formation of dispersed W2C. The dispersed W2C particles play an important role in the dispersion strengthening. Meanwhile, the pores and lamellar structures are eliminated in the remelted NiCrBSi/WC composite coating. Due to these two advantages, the hardness and the high-temperature wear resistance of the remelted NiCrBSi/WC composite coating are significantly improved compared with those with an as-sprayed NiCrBSi coating; the as-sprayed NiCrBSi coating, as-sprayed NiCrBSi/WC composite coating and remelted NiCrBSi/WC composite coating have average hardness of 673.82, 785.14, 1061.23 HV, and their friction coefficients are 0.3418, 0.3261, 0.2431, respectively. The wear volume of the remelted NiCrBSi/WC composite coating is only one-third of that of the as-sprayed NiCrBSi coating.


2014 ◽  
Vol 604 ◽  
pp. 20-23 ◽  
Author(s):  
Oleksandr Umanskyi ◽  
Olena Poliarus ◽  
Maksym Ukrainets ◽  
Iryna Martsenyuk

In this study the influence of the TiB2, ZrB2, and CrB2 additives into NiAl-intermetallics on their wear behavior under friction conditions at the high temperature in the pair with steel has been investigated. It was shown, that the borides additives have influenced on the wear mechanism, significantly increasing the wear resistance of composite coatings pointed out. Among the coatings studied the NiAl-15 wt. % CrB2 coating showed the best result.


2019 ◽  
Vol 26 (10) ◽  
pp. 1950074
Author(s):  
ZHI-YUAN ZHU ◽  
JIA-HUAN CHEN ◽  
YUAN-FEI CAI ◽  
JIAN-QIANG LI

This study explored the friction and wear behavior of a Ni-based exhaust valve at high temperatures. Nickel-based superalloy was used with two types of processing states: the original forged sample and the sample under the standard T1 heat treatment. At room temperature and a loading force of 10[Formula: see text]N, the average friction coefficient of the T1 heat-treated specimen is 0.61, which was lower than that of the forged sample (0.78). The wear rate of this specimen was also lower than that of the forged sample at the same temperature and loading force. Thus, T1 heat treatment can significantly improve the wear resistance of the alloy because of [Formula: see text] phase and carbides. The wear rate was the minimum at 550∘C and increased again at 750∘C dominated by the formation and flake-off of the oxide film.


2011 ◽  
Vol 189-193 ◽  
pp. 173-176
Author(s):  
Zhong Jia Huang ◽  
Dang Sheng Xiong ◽  
Jian Liang Li ◽  
Ming Lang Liu

The MoS2 powders was coated with Al2O3 ratio varying 5wt.% to 50wt.% content. Ni–MoS2/Al2O3 composite coatings were prepared by means of pulse electrodeposition in a nickel-plating bath containing MoS2/Al2O3 powder to be co-deposited. The dependence of surface morphology, microhardness and tribological properties of the composite coatings was investigated in relation to the Al2O3 ratio in MoS2/Al2O3 powder. The results demonstrate that the coating co-deposited with MoS2/50wt.%Al2O3 showed a compact and fine granular surface morphology; the highest microhardness and wear resistance. The hardness of Al2O3 is responsible for this improvement.


1988 ◽  
Vol 140 ◽  
Author(s):  
C. R. Blanchard-Ardid ◽  
J. Lankford ◽  
R. A. Page

AbstractThe use of ceramic materials for high temperature engine applications has prompted interest in the friction and wear characteristics of ceramicceramic pairs in mating contact. This interest has led to both surface and bulk material modifications aimed at improving the lubricity and wear resistance of these materials. This paper will discuss two basic systems developed to allow self-lubrication at high temperatures in ceramic materials through the formation of a lubricious oxide film. Both methods operate under the assumption that the oxide chemistry of the system controls the lubricity and wear properties. Relevant issues for each system will be presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document