Evaluation of the tribological properties of two PEEKs sliding against Al2O3, WC and DLC coatings under dry friction and water lubrication

Author(s):  
Bin Lin ◽  
Hongbo Zou ◽  
Yaqi Meng ◽  
Tianyi Sui ◽  
Shuai Yan

Abstract The tribology performance of two carbon fibre-reinforced polyether-ether-ketones (450FC30 and WG101) sliding against stainless steel 3Cr13 and 3Cr13 coated with aluminium oxide (Al2O3), tungsten carbide (WC) and diamond-like carbon (DLC) under dry friction and water lubrication were studied to reduce the coefficient of friction and improve the wear resistance of water-lubricated bearings. The friction and wear mechanism of different tribopairs were determined via pin-on-disc sliding tests. Experimental results showed that the WG101/Al2O3 tribopair exhibited excellent wear resistance under dry friction and water lubrication. Carbon fibres were exposed on the friction surface of WG101 when WG101 slid against Al2O3. These carbon fibres bore most of the load to reduce wear. This work provides a practical basis for selecting the optimal tribopair for water-lubricated bearings.

Author(s):  
Dietmar Haba ◽  
Andreas Hausberger ◽  
Andreas J Brunner

Just like MoS2, WS2 is known for its outstanding tribologic properties. When used as additives, both were found to considerably improve the tribologic behavior of epoxy, i.e., its coefficient of friction and wear resistance. The best improvements were obtained with WS2 or MoS2 nanoparticles, in particular if they had a fullerene-like morphology. Likewise, fullerene-like WS2 nanoparticles were shown to considerably enhance the fracture toughness of epoxy. It was thus hypothesized that the improved wear resistance could be due to the toughening effect rather than due to reduced friction. Our investigations showed that both flaky and fullerene-like WS2 nanoparticles can improve the fracture toughness of certain epoxy systems, while they can embrittle others. The beneficial effect on the epoxy’s wear resistance could not be confirmed either: The coefficient of friction and wear measured in pin-on-disc tests correlated insignificantly with the type or amount of nanoparticles used or the dispersion technique applied. The fact that the fracture toughness did not correlate with the measured wear suggests that the investigated epoxy system wears by adhesion rather than by abrasion. It is thus possible that tribologic additives like WS2 are unsuited for counteracting this wear mechanism. In a nutshell, both the toughening and the wear-reducing effect of flaky and fullerene-like WS2 nanoparticles seem to depend strongly on the particular epoxy system investigated.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 660
Author(s):  
Dariusz Jędrzejczyk ◽  
Elżbieta Szatkowska

The analyzed topic refers to the wear resistance and friction coefficient changes resulting from heat treatment (HT) of a hot-dip zinc coating deposited on steel. The aim of research was to evaluate the coating behavior during dry friction after HT as a result of microstructure changes and increase the coating hardness. The HT parameters should be determined by taking into consideration, on the one hand, coating wear resistance and, on the other hand, its anticorrosion properties. A hot-dip zinc coating was deposited in industrial conditions (according EN ISO 10684) on disc-shaped samples and the chosen bolts. The achieved results were assessed on the basis of tribological tests (T11 pin-on-disc tester, Schatz®Analyse device, Sindelfingen, Germany), microscopic observations (with the use of optical and scanning microscopy), EDS (point and linear) analysis, and microhardness measurements. It is proved that properly applied HT of a hot-dip zinc coating results in changes in the coating’s microstructure, hardness, friction coefficient, and wear resistance.


2018 ◽  
Vol 70 (9) ◽  
pp. 1706-1713 ◽  
Author(s):  
Guotao Zhang ◽  
Yanguo Yin ◽  
Ting Xie ◽  
Dan Li ◽  
Ming Xu ◽  
...  

Purpose This paper aims to obtain high mechanical and good tribological properties of epoxy resin-based coatings under dry friction conditions. Design/methodology/approach Bonded solid lubricant coatings containing Kevlar fibres were prepared by a spraying method. The friction and wear properties of the coatings were experimentally investigated with a face-to-face tribometre under dry friction conditions. Scanning electron microscopy, energy dispersive X-ray spectroscopy and 3D laser scanning technologies were used to characterise the tribological properties. The action mechanism of the Kevlar fibres on a solid lubricant transfer film was also analysed. Findings Adding Kevlar fibres can significantly improve the wear resistance of the coatings. When the Kevlar fibre content increases, the tribological properties of the coatings improve and then worsen. Superior properties are obtained with 0.03 g of Kevlar fibres. Appropriately increasing the load or speed is beneficial to the removal of the outer epoxy resin and the formation of a lubricant film. During friction, the solid lubricants wrapped in the epoxy resin accumulate on the surface to form a transfer film that shows a good self-lubricating performance. In the later friction stage, fatigue cracks occur on the solid lubricant film but cannot connect to one another because of the high wear resistance and the entanglement of the rod-like Kevlar fibres. Thus, no large-area film falls from the matrix, thereby ensuring the long-term functioning of solid lubricant coatings. Originality/value Epoxy resin-based solid lubricant coatings modified by Kevlar fibres were prepared, and their friction and wear properties were investigated. Their tribological mechanisms were also proposed. This work provided a basis for the analysis of the tribological properties and design of bonded solid lubricant coatings containing Kevlar fibres.


Author(s):  
В.Ю. Фоминский ◽  
В.Н. Неволин ◽  
Д.В. Фоминский ◽  
Р.И. Романов ◽  
М.Д. Грицкевич

The results of a comparative study of the friction and wear of MoSx and MoSex thin film coatings that was carried out in an oxidizing medium (a mixture of argon and air) at a temperature of -100°C are presented. The films were obtained by pulsed laser deposition from MoS2, MoSe2, and Mo targets in vacuum and H2S. It was established that Se-containing coatings significantly exceeded the S-containing coatings in terms of wear resistance and provided a friction coefficient of ~ 0.09. The properties of MoSx films depended on the S concentration, which determines the local packing of atoms in the amorphous structure of the film. The coefficient of friction for MoS3 films after running-in turned out to be half as much as that for MoS2 films, and its value was 0.08.


2021 ◽  
Author(s):  
Tomasz Chrostek

Comparative tests of gas detonation (GDS) coatings were carried out in order to investigate the influence of spraying parameters on abrasive wear under dry friction conditions. The tests were carried out using the pin-on-disc (PoD) method at room temperature. The microstructure of the coatings was analysed by X-ray diffraction (XRD) and scanning electron microscopy (SEM / EDS) methods. The results showed that with specific GDS process parameters, the main phases in both coatings were FeAl and Fe3Al involving thin oxide films Al2O3. The tribological tests proved that the coatings sprayed with the shorter barrel of the GDS gun showed higher wear resistance. The coefficient of friction was slightly lower in the case of coatings sprayed with the longer barrel of the GDS gun. During dry friction, oxide layers form on the surface, which act as a solid lubricant. The load applied to the samples during the tests causes shear stresses, thus increasing the wear of the coatings. During friction, the surface of the coatings is subjected to alternating tensile and compressive stresses, which lead to delamination and is the main wear mechanism of the coatings.


Author(s):  
Takashi Nogi

Some tribological properties of an ionic liquid were investigated by using a pin-on-disc friction and wear tester. Due to running-in, the coefficient of friction of the ionic liquid decreased with time to a very low value of 0.02 which suggests that the lubrication regime was hydrodynamic at the end of the tests. Anti-wear performance of the ionic liquid was substantially comparable to a paraffin-based oil.


1979 ◽  
Vol 101 (2) ◽  
pp. 201-206 ◽  
Author(s):  
Y. Taga ◽  
K. Nakajima

The effects of phosphorus on the friction and wear characteristics of Cu-5 at. percent Sn-P alloys containing 1–5 at. percent P were studied using a pin on disc apparatus. The results showed that the decrease in both the coefficient of friction and the rate of wear became conspicuous with the increase in quantity of Cu3P coexisting in the matrix; its amount increases with the content of phosphorus. The structural changes in the surface of the specimen due to heating in a vacuum were observed by using Auger electron spectroscopy and X-ray photoelectron spectroscopy. It was seen that the surface concentration of phosphorus strongly increased after heating at 573K, whereas the diffusion of tin atoms was markedly retarded. It was concluded from these results that the behavior of phosphorus atoms in the surface during sliding played an important role in the friction and wear characteristics of Cu-Sn-P alloys.


2007 ◽  
Vol 351 ◽  
pp. 75-80
Author(s):  
Rong Chen ◽  
Hong Hua Wang ◽  
Di Zhang ◽  
Guo Ding Zhang

Fretting friction and wear of aluminum alloy, 5 and 10 vol.% SiCp/Al and Ni3Alp/Al composites under 5×10-4 Pa and atmosphere was investigated. Wear mechanism in vacuum was compared to that in atmosphere at different applied loads. The coefficient of friction (COF) of the SiCp/Al composites was larger than aluminum and Ni3Alp/Al composites, however, incorporation of SiC particles into Al alloy increased the fretting wear resistance of Al alloys, especially in vacuum. It should be notices that the maximum wear depth was larger in vacuum under fretting wear, and the Ni3Alp/Al composites show low fretting wear resistance.


2007 ◽  
Vol 14 (03) ◽  
pp. 489-497 ◽  
Author(s):  
B. F. YOUSIF ◽  
N. S. M. EL-TAYEB

In this work, tribological investigations on the neat polyester (NP) and woven (600 g/m2)-glass fabric reinforced polyester (WGRP) composite were carried out. Friction and wear characteristics of the WGRP composite were measured in three principal orientations, i.e., sliding directions relative to the woven glass fabric (WGF) orientations in the composites. These are longitudinal (L), transverse (T), and parallel (P) orientations. The experiments were conducted using a pin-on-disc (POD) machine under dry sliding conditions against a smooth stainless steel counterface. Results of friction coefficient and wear resistance of the composites were presented as function of normal loads (30–100 N) and sliding distances (0.5–7 km) at different sliding velocities, 1.7, 2.8, and 3.9 m/s. Scanning electron microscopy (SEM) was used to study the mechanisms of worn surfaces. Experimental results revealed that woven glass fabric improved the tribological performance of neat polyester in all three tested orientations. In L-orientation, at a low velocity of 1.7 m/s, WGRP exhibited significant improvements to wear resistance of the polyester composite compared to other orientations. Meanwhile, at high velocities (2.8 and 3.9 m/s), T-orientation gave higher wear resistance. SEM microphotographs showed different damage features on the worn surfaces, i.e., deformation, cracks, debonding of fiber, and microcracks.


Author(s):  
R. Ribeiro ◽  
S. Ingole ◽  
O. Juan ◽  
H. Liang ◽  
M. Usta ◽  
...  

Enhanced corrosion and wear resistance are crucially important to prolong the service life of biomaterials. Boronizing has been reported to enhance the wear resistance of pure chromium. In this research, we investigate friction and wear behavior of boronized chromium. Pin-on-disc tribometer was used to conduct the wear and friction tests. Experiments were conducted in dry conditions as well as in simulated body fluid (SBF). Fundamental aspects of wear mode and lubrication behavior were studied using surface characterization techniques such as TEM, and X-ray diffraction. Results showed evidence of tribo-chemical interactions between SBF and work piece materials.


Sign in / Sign up

Export Citation Format

Share Document